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Fig. 1: The proposed multi-object grasping method MultiGrasp drives the Shadow Hand to catch multiple Pokémons simultaneously.

Abstract— The human hand’s complex kinematics allow for
simultaneous grasping and manipulation of multiple objects, es-
sential for tasks like object transfer and in-hand manipulation.
Despite its importance, robotic multi-object grasping remains
underexplored and presents challenges in kinematics, dynamics,
and object configurations. This paper introduces MultiGrasp, a
two-stage method for multi-object grasping on a tabletop with a
multi-finger dexterous hand. It involves (i) generating pre-grasp
proposals and (ii) executing the grasp and lifting the objects.
Experimental results primarily focus on dual-object grasping
and report a 44.13% success rate, showcasing adaptability
to unseen object configurations and imprecise grasps. The
framework also demonstrates the capability to grasp more than
two objects, albeit at a reduced inference speed.

I. INTRODUCTION

Infants aged 6-9 months transition from “grabbing” objects
with their entire hand to “pincer grasp” using only a subset
of fingers [1]. This developmental milestone lays the ground-
work for advanced object manipulation, including multi-
object grasping [2, 3]. In comparison, the field of robotics
has seen significant advances in multi-fingered dexterous
hands [4–10]. These robotic hands enable complex grasping
and in-hand manipulation [11–17], enhancing interaction
with the environment for embodied intelligence.

However, most of the existing work on robotic grasping
is geared toward single-object grasping [4–9]. Some ap-
proaches often employ similar strategies that involve en-
veloping the hand around the object and squeezing the
fingers towards it [6, 18]. Such a paradigm essentially treats
dexterous robotic hands as if they were parallel grippers,
thereby significantly underestimating and underutilizing the
inherent potential offered by their highly articulated structure
and kinematic redundancy.

: Corresponding emails: {liutengyu, syhuang}@bigai.ai.
1 National Key Laboratory of General Artificial Intelligence, Beijing

Institute for General Artificial Intelligence (BIGAI). 2 Department of
Automation, Tsinghua University (THU). 3 Institute for Artificial Intelli-
gence, Peking University (PKU). 4 School of Electronics Engineering and
Computer Science, PKU.

In this work, we extend beyond single-object grasping to
explore multi-object grasping, a complex yet under-studied
task requiring careful management of dexterous kinematics
and dynamics. Given multiple objects on a table, our goal is
to control a multi-fingered dexterous hand to grasp and lift
them simultaneously. While similar to single-object grasping
at first glance, the key difference lies in the need for
independent force closure on each object. Unlike single-
object grasping where the object is a single entity, multi-
object grasping deals with objects lacking a rigid connection
among them, introducing unique challenges, including:

Diverse Configurations: Multi-object grasping in-
volves a wide array of object configurations, influenced by
their differing geometries, combinations, and placements.
The diversity is further compounded by the various hand
configurations, requiring the development of adaptable and
versatile grasping strategies [3, 10].

Intricate Kinematics: In multi-object grasping, each
object takes up a considerable part of the hand’s workspace.
Simple contacts via the palm or fingertips are inadequate, and
the entire length and sides of the fingers must be utilized [3,
10]. This requires carefully configuring the grasping pose for
force closure on each object while avoiding collisions.

Complex Dynamics: In multi-object grasping, the tra-
ditional enveloping and squeezing strategy for single-object
grasping is insufficient. Repositioning a finger towards one
object could compromise support for another. Therefore,
precise control and adjustment of the wrenches at each
contact point become crucial.

To tackle these challenges, we present MultiGrasp, a
computational framework for multi-object grasping shown
in Fig. 2. MultiGrasp first generates a pre-grasp pose, fol-
lowed by an execution policy to pick up the object. We
construct Grasp’Em, a large-scale synthetic dataset of 90k
diverse multi-object grasps using the Shadow Hand. A grasp
generation model based on [19, 20] produces pre-grasp poses
for unseen object configurations. For grasp execution, we
propose a two-stage policy that combines motion planning
for reaching and a learned policy for lifting. We incorporate
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techniques to enhance the lifting policy’s generalization and
adaptability for unseen object configurations and imprecise
pre-grasp poses. Our method achieves a 44.13% success rate
in simulation for dual-object grasping with a Shadow Hand
and scales to more objects. Real-world experiments confirm
its applicability.

In summary, the contributions of this work are fourfold:
(i) the introduction of Grasp’Em, a large-scale synthetic
dataset tailored for multi-object grasping research; (ii) the
development of the first Goal-Conditioned Reinforcement
Learning (GCRL) policy for concurrent grasping and lifting
of multiple objects from a table; (iii) the enhancement of
the execution policy for better adaptability to unseen object
configurations and imprecise pre-grasp poses, achieved via
specialist distillation and curriculum learning; (iv) a compre-
hensive framework, MultiGrasp, that extends existing robotic
systems toward robust, accurate multi-object grasping.

A. Related Work

Generating Dexterous Grasping: Generating grasping
poses for dexterous robotic hands, specifically conditioned
on the target objects, is complex due to the intricate kine-
matics and physical constraints involved. Research in this
area is primarily bifurcated into two paradigms: analytical
approaches and data-driven methodologies [21].

Analytical methods have a long-standing history, with
early research focusing on algorithmic solutions for hand-
and object-specific grasping poses [22–24]. GraspIt! [18]
extended this to arbitrary hands and objects but mainly
through a reach-and-squeeze strategy, limiting the variety of
grasping poses. Recent works have introduced generalized
grasp quality metrics like force closure and Q1 for quicker
and more adaptable grasp synthesis [7, 25, 26]. Conversely,
data-driven methods utilize models to capture the distribution
of grasping poses [20, 27–30] or their proxy representations
like contact points [31] and contact maps [4, 6, 32, 33],
conditioning on object characteristics.

Recent studies aim for human-level interaction capabili-
ties, including functional grasping [9], generalizable grasp-
ing [6], and multi-object grasping [10].

Multi-Object Grasping: Multi-object grasping aims
to find optimal configurations for holding multiple objects
in one hand. Existing research mainly follows two distinct
approaches. The first focuses on grasping a handful of simple

objects like balls, bricks, or pencils for grasp efficiency. It
usually leverages inter-object contacts for grasp stability [34–
39], and does not require much kinematic redundancy. Al-
though efficient in grasping, this limits individual object
manipulation. The second approach leverages the hand’s
kinematic redundancy to grasp each object with different
hand regions, allowing nuanced control over individual ob-
jects [10]. Our work aligns more with the second approach,
aiming to maintain individual object maneuverability while
boosting grasp efficiency.

Reinforcement Learning (RL): Robots often oper-
ate in complex physical environments, making analytical
solutions challenging due to noisy sensory input. RL is
commonly used for decision-making and control in these
cases [4, 5, 16, 40, 41]. As a specialized form, GCRL [42]
focuses on skill acquisition for predefined objectives, but
faces challenges in goal generalization and sparse reward
handling [42]. To aid RL in robotics, IsaacGym [43] offers
a GPU-accelerated simulation environment ideal for paral-
lelized and computationally demanding agent training.

In multi-object grasping, naive approaches fall short due
to diverse object configurations. We use GCRL for secure
lifting policies, accelerated by IsaacGym, and introduce
techniques for improved generalization and dense rewards.

B. Overview of MultiGrasp

To clarify the task, we consider a tabletop environment
with multiple objects, denoted as O“ tOju

No
j“1. Each object

Oj is represented as a point cloud in RNˆ3, sampled from
its surface SpOjq. The goal is to find a sequence of hand
actions, A“ tatuTt“1, to control the robotic hand to grasp all
objects. We focus on cases where objects are close enough
for simultaneous grasping.

As shown in Fig. 2, the pipeline is divided into stages.
Given O, the first stage (Fig. 2A-B) proposes a pre-grasp
pose H “ pp,R, qq that encapsulates all objects. p denotes the
hand’s position, R its orientation, and q the joint angles. We
have two solutions to sample H from conditional distribution
H „ ppH|Oq: a synthetic algorithm for high-quality but
slower synthesis (Sec. II-A), and a faster generative model
that compromises quality (Sec. II-B). Then, the pose is
executed (Fig. 2C-E) with an optimization-based motion plan
to guide the hand to the pre-grasp pose, followed by an RL
policy for lifting the objects (Sec. III).

D. Goal-Conditioned Reinforcement Learning E.  Distillation

B. Diffusion

A. Augmented DFC

GC-H GC-O Lift Success

Rewards: goal, state

C. Planned 
Reaching

Fig. 2: The pipeline of MultiGrasp.



Fig. 3: Synthetic grasps of the augtmented DFC. Columns 1-2:
single object. Columns 3-4: duel objects. Column 5: triple objects.

II. MULTI-OBJECT GRASP POSE GENERATION

A. Preliminaries

Multi-object grasping necessitates a carefully crafted pre-
grasp pose. By augmenting the Differentiable Force Clo-
sure (DFC) algorithm [7], we generate diverse and stable
pre-grasp poses for multiple objects. The hand configura-
tion H is sampled from the Gibbs distribution: ppH|Oq “
ppH,Oq

ppOq
9ppH,Oq „ 1

Z e´EpH,Oq, where the energy function
EpH,Oq aggregates various energy terms for grasping:

EpH,Oq “

No
ÿ

j“1

min
xjĂSpHq

EFCpxj , Ojq`λpenEpenpH,Oq`λqEqpHq, (1)

where EFCpxj , Ojq calculates the force-closure error for
object Oj , with xj as the hand’s contact points that minimize
this error. EpenpH,Oq penalizes object-hand penetration,
and EqpHq penalizes joint angles exceeding their limits. We
employ gradient-based optimization on Eq. (1), adjusted by
Metropolis-Adjusted Langevin Algorithm (MALA) to evade
poor local minima. For efficiency, we parallelize optimiza-
tion from multiple initial states, discarding those energies
exceeding acceptance thresholds. For algorithmic details and
force-closure estimation, we refer to [7].

B. Multi-object Grasp Generation

Using DFC for multi-object pre-grasp pose generation on
the fly is computationally intensive, particularly in diverse
real-world scenarios. To expedite this, we employ a condi-
tional diffusion model, sidestepping the cumbersome MALA
synthesis. In line with Denoising Diffusion Probabilistic
Model (DDPM) [19], given the object point clouds O, the
grasp pose H “Hp0q is sampled through a denoising process:

ppHp0q
|Oq “

T
ź

t“1

ppHpt´1q
|Hptq,Oq,

ppHpt´1q
|Hptq,Oq “N

´

Hpt´1q;µpt´1q,Σpt´1q
¯

,

µpt´1q
“µθpHptq, t, fθpOqq, Σpt´1q

“Σptq.

(2)

We utilize SceneDiffuser [20] to learn Eq. (2). The model
takes as input object point clouds and proposes a pre-grasp
pose. To capture local object geometry crucial for grasp-
ing [44], PointNet++ [45] is employed to extract Nfeat fea-
ture vectors from each object’s point cloud. These No ˆNfeat

features are concatenated to form object conditions fθpOq.
During each sampling step, cross-attention is computed with
Hptq as queries and the object conditions as keys and values.

To differentiate features from various objects, we append
a learnable embedding to each feature vector. Identical
embeddings are used for the same object instance, while
distinct ones are used for different objects. To facilitate part-
level interaction reasoning between finger links and objects
in Cartesian space, we represent the hand configuration using
31 keypoints rather than joint angles. An optimization-based
Inverse Kinematics (IK) solver is employed to derive joint
angles from these keypoints.

To train the model, we use our synthesis algorithm to
create Grasp’Em, a large-scale synthetic dataset for multi-
object grasping. The dataset comprises « 90k synthetic pre-
grasp poses, including 16.4k single- and 73.7k dual-object
grasps, featuring 8 diverse objects from YCB [46] and
ContactDB [47]. Objects are rescaled and randomly placed
on a table. The augmented DFC algorithm runs for 7,500
optimization steps, with the first 6,000 adjusted by MALA.
Large-scale synthesis for two objects from 8192 initial pro-
posals takes about 1.25 hours on a single NVIDIA A100.
Fig. 3 displays synthesis results for varying object counts.

C. Multi-object Grasp Refinement

Although the diffusion model offers promise, it sometimes
produces imprecise grasps, such as hand penetration into
objects or lack of finger contact. To address these issues,
we optimize the hand configuration to minimize penetration
and promote close contact. The optimization is formulated:

min
H

EgpH,Oq “EpenpH,Oq´
λc

No|SpHq|

No
ÿ

j“1

ÿ

xPSpHq

dpx,Ojqďτ

dpx,Ojq,

(3)
where the penetration energy is as defined in Eq. (1). The
second term aims to guide floating fingers toward nearby
object surfaces, where dp¨q is the distance from the contact
point x to the object surface Oj . The threshold τ linearly
decreases from 2.0mm to 1.0mm for coarse-to-fine refine-
ment.

III. MULTI-OBJECT GRASP EXECUTION

The execution of the proposed grasping is divided into a
reaching and a lifting phase, as depicted in Fig. 2C-E. The
reaching phase is solved using a motion planner, while the
lifting phase employs a learned RL policy.

Reaching: To plan a collision-free trajectory from the
initial to the pre-grasp pose, we start with linear interpolation
as an initial guess and then optimize to eliminate penetration
while ensuring temporal smoothness.

Lifting: Conventional execution strategies, such as
squeezing fingers and lifting from pre-grasp poses [8, 18],
or squeezing fingers toward the nearest object surface [6],
often fail due to task complexity. To achieve precise, adaptive
control, we employ GCRL to address the intricate dynamics
of object interactions.



A. Learning a Multi-Object Lifting Policy

To manage the complex dynamics of lifting objects, we
employ Proximal Policy Optimization (PPO) [48] to learn a
lifting policy in simulation. Starting from the pre-grasp pose
of both hands and objects, the policy aims to control hand
pose and joint angles to lift all objects, with reward defined:

r “ωliftrlift `ωsucc1succ `ωrrr `ωqrq `ωobjrobj. (4)

To promote successful lifting, we offer a dense reward
based on the object elevation rlift “minj hj , where hj is the
height of the j-th object. A bonus rsucc is given for lifting
all objects above 15cm. Empirically, rewards for maintaining
goal states for hand and object positions enhance learning.
Specifically, we linearly penalize deviations from goal states
in hand orientation (rr), joint angles (rq), and object poses
in hand coordinates (robj). Fig. 2D visualizes these rewards.

Following Chen et al. [16], we enrich the policy’s obser-
vations with current and goal states of the hand and objects,
as well as their residues. Geometrical cues are provided by
the hand and object features extracted from point clouds
using a pretrained PointNet [49]. These features and states
are computed in hand coordinates for consistent observations
during lifting. To enhance sample efficiency, we train the
policy across 512 parallel IsaacGym environments [43], each
initialized with a unique pre-grasp pose, and periodically
update these poses for broader training coverage.

Importantly, in real-world applications, only the hand’s
state information and depth camera-captured point cloud are
available. Therefore, we distill the policy into a vision-based
version using DAgger [50], replacing object features and
states in the observation with scene point cloud features.

B. Learning a Generalist from Specialists

We find that the lifting policy varies depending on object
configurations and pre-grasp poses, such as spheres versus
cylinders or parallel versus perpendicular placements to the
forearm. To create a generalist policy adaptable to diverse
scenarios, we maintain the settings from Sec. III but em-
pirically cluster the grasp data into bins based on object
combinations and placements. We then train a specialist
policy for each bin. During the distillation of the vision-based
policy, expert demonstrations for each grasp are sourced from
the corresponding specialist policy.

C. Adapting to Imprecise Pre-Grasp Poses

Even after refinement, generated grasps may still have
penetration and lack of contact. Additionally, executing the
planned trajectories can lead to collisions and objects being
moved. Policies trained solely on high-quality synthetic data
are ill-suited for these imprecise scenarios, and direct training
on such poses is ineffective due to the misleading goal.

To tackle this, we employ a structured learning curriculum.
We generate imprecise poses using the trained DDPM on
random object placements. Importantly, we record the hand
and object states at the final frame of the reaching trajectory
for both synthetic and generated grasps, capturing instances
where objects are touched and moved by fingers. The first

training period focuses solely on synthetic pre-grasp poses.
In the second period, we introduce these imprecise poses
from both synthetic and generated data with objects moved.
The final period primarily includes generated data with
objects moved.

IV. SIMULATIONS AND EXPERIMENTS

Following the evaluation protocol outlined in Sec. IV-
A, we rigorously validate the proposed method. We present
quantitative results for pre-grasp poses in Sec. IV-B, execu-
tion in Sec. IV-C, and ablation studies in Sec. IV-D. The
method’s generalization is showcased through simulations
for multiple objects (Sec. IV-E) and real-world dual-object
tests (Sec. IV-F). Failure cases are discussed in Sec. IV-G.

A. Evaluation Protocols

We generate random table-top object placements for each
multi-object combination, following the same procedure as
in our dataset (Sec. II-B). Pre-grasp poses are generated
for each placement, and those with severe penetration or
insufficient contact ratio are discarded. A grasp is deemed
successful if all objects are lifted above 10cm. We test the
policy on 512 poses, each with five attempts, and calculate
the average success rate.

For dual-object grasping, our dataset’s eight objects yield
C1

8 `C2
8 “ 36 unique combinations. We designate eight pairs

as unseen combinations to assess generalization, ensuring all
eight objects are represented. Additionally, we introduce six
combinations with three out-of-domain objects to further test
generalization. The direction of the line connecting object
centers in the hand’s local coordinate frame is used to cluster
grasps into bins, with a specialist policy trained for each bin.

Baselines: While no methods directly align with our
task, we adopt two recent dexterous grasping approaches
for comparison. GenDexGrasp [6] uses contact maps for
single-object grasping, which we extend to multi-object
scenarios using Grasp’Em and test with our execution
pipeline. Intersection Bisector Surface (IBS)-Grasping [8]
learns single-object grasps with observation on the IBS using
RL. We adapt it by using Grasp’Em as initial off-policy
demonstrations and then training with a modified reward for
grasping multiple objects.

Protocols: For baselines, we evaluate their performance
using pre-grasp poses generated on the same set of unseen
object placements. We assess the effectiveness of these pre-
grasp poses by training a single state-based policy for each
method. Specifically, for our approach and GenDexGrasp, we
train one state-based policy as described in Sec. III. In the
case of IBS-Grasping, we retain its original execution policy,
which involves lifting directly from the pre-grasp pose once
the policy predicts a stop action.

B. Pre-Grasp Proposals

We evaluate the quality of synthesized or generated static
grasping poses using four metrics: (1) Q1 Metric: Measures
the largest origin-centered 6D sphere radius in the resistive
wrench space [51]. For multi-object grasps, we report the



minimum generalized Q1 [52] among all objects. (2) Pen-
etration (PN): The maximum intersection depth (in mm)
between the hand and all objects. A physically plausible
grasp should minimize this metric. (3) Grasp Diversity
(Div): The average variance of joint angles (in deg) across all
grasp samples, indicating the diversity of grasping strategies.
(4) Inference Time: Measured in seconds on a single RTX
3090Ti GPU with a batch size of 256, evaluating efficiency.

Quantitative results in Tab. I demonstrate the efficacy of
our methods in generating viable multi-object grasps within
reasonable time constraints. While synthetic grasps (Syn-Pl)
offer the highest quality but are time-intensive, generated
grasps (Gen) offer a trade-off between quality and inference
time, yet still achieve acceptable success rates. Notably, the
generative model effectively generalizes to unseen object
placements (Gen-Pl), combinations (Gen-Com), and geome-
tries (Gen-Geo), despite being trained on only 8 objects. This
robust performance is attributed to the diversity in object
configurations used during training.

In contrast, Tab. Ib shows GenDexGrasp [6] (GDG) offers
similar grasp quality but lacks diversity and often penetrates
the table, as it was not designed for tabletop grasping. IBS-
Grasping [8] (IBS) has more severe penetration issues, likely
due to its unstable stochastic policy.

C. Execution Policy

Tabs. Ia and Ib reports execution results in the last
columns. Synthetic grasps on unseen object placements (Syn-
Pl) achieve the highest success rate. Generated grasps (Gen)
of lower quality still maintain a reasonable success rate. The
success rates decrease for out-of-domain object combinations
(Gen-Com) and geometries (Gen-Geo). In distillation, stu-
dent policies exhibit slightly lower success rates compared
to their teachers but are viable for real-world applications.

In comparison, baseline methods perform worse in execu-
tion. The main reason is that the representation for grasping
they use contains insufficient and coarse information for
careful kinematics management in multi-object grasping.
Besides, deep penetration causes more collisions in reaching
that severely perturb the objects.

TABLE I: Quantitative results. Specialist and generalist success
rates are separated by “/”. ˚Same execution method as “w/o Spe”
in Tab. IIb. ˚˚Evaluated in PyBullet; otherwise in Isaac Gym.

(a) Quantitative evaluations on our method.

Setting Pre-Grasp Pose Execution
Q1 Ò PN Ó Div Ñ Time Ó Succ (%)

Syn-Pl 0.30 1.64 8.54 > 1200 68.34 / 44.13

Gen-Pl 0.29 1.67 9.24 12.29 40.20 / 30.24
Gen-Com 0.25 2.65 8.45 12.29 - / 23.32
Gen-Geo 0.29 1.54 9.14 12.29 - / 15.65

(b) Comparisons with baseline models [6, 8]

Method Q1 Ò PN Ó Div Ò Succ (%)

Ours-1˚ 0.29 1.67 9.24 37.34
GDG [6] 0.27 27.75 4.23 25.55
IBS [8] 0.23 36.29 7.09 12.20˚˚

D. Ablations

We conduct ablation studies on our pipeline, focusing on
grasp generation (Tab. IIa) and execution policy (Tab. IIb).
For simplicity, we evaluate only generated grasps on unseen
object placements and report specialist performances, which
generally correlate positively with student policy outcomes.
We limit our tests to four randomly selected specialists,
covering all four object placement bins, to ablate other
execution techniques. These results offer key insights:

Reasoning Interactions in Cartesian Space: Inspired
by Zhang et al. [53], our model generates 31 keypoints on
the hand and uses IK to obtain the grasp. Directly generating
joint angles led to a performance drop. This is likely because
generating joint angles requires the model to reason in the
robot’s joint space, whereas our keypoint approach reasons in
Cartesian space, capturing part-level interactions more effec-
tively. Additionally, the generated keypoints adhere closely
to kinematic constraints, with average IK errors below 1mm
per keypoint.

From Specialists to Generalists: Tab. IIb reveals that
using specialists for similar object placements and combi-
nations marginally improves expert demonstration quality.
However, using specialists individually leads to performance
declines. While Xu et al. [4] showed the benefits of mul-
tiple specialists for diverse object geometries, our dataset’s
limited diversity—36 combinations from 8 mostly convex
objects—may be sufficient for a single teacher policy. The
effectiveness of specialists might become apparent with more
diverse object configurations and better clustering.

Training Adaptive Policy: Tab. IIc underscores the
importance of our design choices in the execution policy.
First, the near-complete failure of lifting without an RL
policy (w/o RL) highlights its necessity. Second, omitting
observations and rewards for maintaining the pre-grasp pose
(w/o Goal) complicates learning by enlarging the search
space. Finally, training solely on synthetic data without
adaptation to imprecise poses (w/o Adpt.), or directly training
on these poses without a structured curriculum (w/o Curr.),
leads to suboptimal performance.

TABLE II: Ablation Studies. ˚Evaluated on a subset of objects
for efficiency.

(a) Generative model.

Setting Q1 Ò PN Ó Succ (%)

Ours 0.29 1.67 40.20
Joint Pos. 0.18 5.50 19.31

w/o Obj Embd. 0.27 1.38 37.21
w/o Refinement 0.29 7.68 16.24

(b) Specialist settings in RL.

Setting Succ (%)

Ours 40.20
w/o Spe-Pl 29.09

w/o Spe-Com 26.23
w/o Spe 37.34

(c) Other RL designs.

Setting Succ (%)

Ours˚ 45.25
w/o RL 1.37

w/o Goal 16.79
w/o Adpt. 25.05
w/o Curr. 24.88



Fig. 4: Our pipeline supports grasping different amounts (1-5)
of objects. Each row depicts object placement and execution for
varying object counts.

Fig. 5: Executing a grasp with a Shadow Hand in the real world.
Pictures above show reaching, grasping (top), and lifting (bottom).

E. Grasping More Objects

We evaluate our pipeline’s ability to grasp varying num-
bers of objects, specifically 1-5 cylinders. Grasps and corre-
sponding state-based execution policies are synthesized for
each case, as shown in Fig. 4. As the object count increases,
both synthesis and execution become more challenging.
For four objects, object-object contact becomes crucial for
stability. With five objects, the hand must invert to scoop
them up due to kinematic constraints. These results highlight
our method’s scalability and performance boundary.

F. Real-World Experiment

We validate our method with a Shadow Hand mounted
on a UR10e arm in the real world. Due to the task’s com-

(a) Poorly generated samples:
Missing force-closure (top) and
penetration (bottom).

(b) Execution failures: Drop-
ping objects (top) and lift fail-
ures (bottom).

Fig. 6: Common grasp failures in generation and execution.

plexity, we precompute execution trajectories in simulation
and implement them on the physical robot. After hand-eye
calibration, the hand and arm are jointly controlled along the
trajectory. As shown in Fig. 5, our method successfully en-
ables the robot to grasp two objects from a table, showcasing
its applicability to real-world robotic systems.

G. Failure Cases

We show examples of typical failure cases in our pipeline
in Fig. 6. Main failures come from (1) bad grasp generation
samples and (2) failure to lift the objects or drop the objects
in the air in execution.

V. DISCUSSIONS

This paper introduces MultiGrasp, a comprehensive frame-
work for simultaneous multi-object grasping using multi-
finger hands. Our approach demonstrates scalability to vary-
ing object quantities and feasibility for real-world deploy-
ment. This work paves the way for further advancements
in multi-object grasp planning and execution, aiming to em-
power robots with versatile and efficient grasping capabilities
in the real world. Although we focus mainly on simul-
taneously grasping multiple objects, we also envision the
potential of another practical and anthropomorphic approach
that involves grasping objects sequentially. We plan to extend
our framework to support efficient sequential object grasping,
enhancing its versatility.

Additionally, future exploration includes bimanual multi-
object manipulation, where one hand holds objects while
the other inserts them. This approach relaxes geometrical
constraints and opens new avenues for versatile object inter-
actions. Furthermore, we aim to equip robots with in-hand
manipulation and tool usage abilities, broadening their utility
in real-world scenarios. These advances will enable robots to
perform more sophisticated tasks and interactions, bridging
the gap between robots and humans.
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