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Fig. 1: Ag2Manip enables various manipulation tasks in scenarios where domain-specific demonstrations are unavailable. With
agent-agnostic visual and action representations, Ag2Manip: (a) learns from human manipulation videos; (b) acquires diverse manipulation
skills autonomously in simulation; and (c) supports robust imitation learning of manipulation skills in the real world.

Abstract— Enhancing the ability of robotic systems to au-
tonomously acquire novel manipulation skills is vital for
applications ranging from assembly lines to service robots.
Existing methods (e.g., VIP, R3M) rely on learning a generalized
representation for manipulation tasks but overlook (i) the
domain gap between distinct embodiments and (ii) the sparse-
ness of successful task trajectories within the embodiment-
specific action space, leading to misaligned and ambiguous task
representations with inferior learning efficiency. Our work ad-
dresses the above challenges by introducing Ag2Manip (Agent-
Agnostic representations for Manipulation) for learning novel
manipulation skills. Our approach encompasses two principal
innovations: (i) a novel agent-agnostic visual representation
trained on human manipulation videos with embodiments
masked to ensure generalizability, and (ii) an agent-agnostic
action representation that abstracts the robot’s kinematic chain
into an agent proxy with a universally applicable action space
to focus on the core interaction between the end-effector and
the object. Through our experiments, Ag2Manip demonstrates
remarkable improvements across a diverse array of manipula-
tion tasks without necessitating domain-specific demonstrations,
substantiating a significant 325% improvement in average
success rate across 24 tasks from FrankaKitchen, ManiSkill,
and PartManip. Further ablation studies underscore the critical
role of both representations in achieving such improvements.

I. INTRODUCTION

The ability to learn and master new manipulation skills
without expert demonstrations (see Fig. 1) is crucial for
robots while adapting to evolving tasks and environments.
Despite significant advancements in learning manipulation
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skills [1–7], the autonomous acquisition of these skills with-
out expert demonstrations and task-specific reward remains
a challenge. To tackle this, previous works [8–10] explore
leveraging extensive pre-training to facilitate manipulation
learning. Among them, [8, 9] develop general visual repre-
sentations from human-centric video datasets such as Epic-
Kitchen [11] and Ego4D [12], which captures the essence of
tasks and the temporal relationship between visual frames,
and then generates rewards that guide robots towards achiev-
ing desired goals. Other approaches [10] employ Large Lan-
guage Models (LLMs) to directly create reward functions for
acquiring new manipulation skills. However, these methods
usually fall short when facing complex tasks, underscoring
three primary challenges in novel skill learning.

First, the visual representations trained on human-centric
demonstrations [8, 9] face difficulty reconciling the diverse
appearance and kinematics discrepancies between humans
and robots. The discrepancy in appearance introduces biases
when these models are applied to robots, compromising the
models’ ability to accurately interpret tasks and the temporal
relations between video frames. Additionally, kinematic dif-
ferences result in divergent task execution strategies between
humans and robots; robots may opt for trajectories distinct
from those observed in human demonstrations to complete
tasks like picking up a cup. This divergence can lead the
model to mistakenly view a robot’s efficient path as incorrect,
a misjudgment rooted in its human-centric training data.

Second, due to the consistent presence of human hands
in the training data, these human-centric visual models tend
to prioritize the appearance of human hands, focusing on
their position and movement rather than the actual task
objective. For instance, in cup manipulation, the model might
emphasize the upward movement of hands, disregarding



whether the cup has been successfully picked up.
Lastly, the precision required in robot manipulation further

exaggerates the aforementioned challenges. Minor deviations
in trajectories can lead to significant performance drops.
While expert-designed rewards offer detailed guidance, those
generated from visual or language models tend to be broad
and high-level, leading to inaccuracies. This issue becomes
particularly pronounced in tasks requiring intricate interac-
tion with the environment, such as opening a door, where
precise actions like grasping the handle are crucial.

We introduce Ag2Manip: Agent-Agnostic representations
for Manipulation to tackle the above challenges. As shown
in Fig. 2, Ag2Manip consists of two key designs of gener-
alizable visual and action representations.

To tackle the challenges rooted in human-centric training
data, we propose to learn an agent-agnostic visual represen-
tation. Inspired by Bahl et al. [2], we segment and mask both
the humans and the robots from the video frames and then
inpaint the videos with the masks. By training on the frames
with the agent removed following R3M [8], the learned
agent-agnostic visual representation eliminates the domain
gap between humans and robots, enabling robust applications
to robot-centric scenarios. The rewards derived from this
agent-agnostic representation focus on the procedures of the
tasks rather than on the human hand, providing more robust
and clearer guidance to the goal of manipulation learning.

To tackle the inaccuracies from the visual guidance,
we introduce an agent-agnostic action representation. This
method abstracts a robot’s actions into those of a proxy
agent, designed with an action space universally applicable
across various embodiments. This representation simplifies
manipulation learning into reinforcement learning with two
phases: exploration and interaction. In the exploration phase,
we focus on learning the trajectory of the proxy’s position,
which mirrors the end-effector’s movements, facilitating en-
vironment exploration. Once the proxy is close enough to
a tractable area of an object, we switch to the interaction
phase. Here, the learning objective shifts to understanding the
proxy’s exerted forces, simulating the physical interactions
between the end-effector and objects. This abstraction of
the manipulation process into exploration and interaction
phases sidesteps the complexities tied to the robot arm’s
movements and object handling. By adopting this agent-
agnostic action space, we offer a streamlined framework for
learning manipulation tasks, enabling the policy to focus on
the crucial aspects of tasks while alleviating the impact of
lacking detailed, granular guidance. We additionally propose
a carefully shaped reward function for reinforcement learning
in both stages to encourage interaction and a retargeting
approach to recover the robot’s arm motions.

We demonstrate the efficacy and robustness of Ag2Manip
through goal-conditioned novel skill learning without expert
demonstrations and task-specific rewards. Extensive experi-
ments are conducted on diverse tasks in simulation across
FrankaKitchen [13], ManiSkill [14] and PartManip [6].
Experiments reveal that Ag2Manip attains an outstanding
78.7% success rate across all tasks, markedly surpassing

baseline methods, which achieve only an 18.5% success
rate. By adopting agent-agnostic visual and action rep-
resentations, Ag2Manip marks a significant stride in the
field of manipulation learning without the need for domain-
specific demonstrations. This progress equips robots with the
capability to adeptly handle novel tasks across diverse sce-
narios. We further validate our approach through real-world
experiments, where the robot acquires diverse manipulation
skills by learning from demonstrations. Our model achieves
a significantly better success rate compared with others.

In summary, our work presents three key contributions to
learning novel manipulation skills without expert demonstra-
tions: (i) an agent-agnostic visual representation that bridges
the embodiment gap, enabling more accurate interpretation
of visual data for robotic systems; (ii) an agent-agnostic
action representation that streamlines the learning of ma-
nipulation tasks by abstracting complex robot actions into
simpler and universal proxy-agent actions; this representation
is further boosted by a carefully shaped reward function
that encourages interactions with the environment; and (iii)
a significant advancement in the performance of robot novel
skill learning, demonstrated across a range of demanding
tasks, showcasing the practical efficacy of our approach in
improving robotic adaptability and skill acquisition without
the need for direct human oversight.

II. RELATED WORKS

A. Learning Robotic Manipulation

Learning robotic manipulation relies not only on basic
motor skills like grasping [15–17] and manipulation [6, 18–
20], but also on obtaining advanced cognitive abilities for
discerning task specifics, such as the location, method, and
rationale for different tasks [21–23]. Leveraging parallel
simulation environments [24, 25], Goal-Conditioned Rein-
forcement Learning (GCRL) comes in handy in learning
skills but often requires manually crafted reward functions
for each task [15, 16, 19], even with the help of LLMs and
human feedback [10]. One promising solution is learning
manipulation skills from demonstrations, circumventing the
extensive exploration and simplifying scalability [23]. Robot
action trajectories can be obtained via teleoperation [26, 27],
Augmented Reality (AR) systems [28], and teach pendant
programming [1, 3, 4]. Learning from human videos presents
a cost-effective yet challenging method to translate interac-
tions into motor controls [27, 29]. The balance between the
cost of data collection and the quality of demonstrations
remains a significant obstacle to the direct acquisition of
novel skills from such demonstrations.

Drawing inspiration from recent studies [8, 9], our work
introduces a generalized visual representation to facilitate
novel manipulation skill learning across various tasks, uti-
lizing the rich resource of human demonstrations. This
approach aims to overcome the limitations of direct skill
learning from videos, offering a scalable and efficient path-
way for robots to acquire new abilities.
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Fig. 2: Pipeline of Ag2Manip. Our method consists of three parts: (left) learning an agent-agnostic visual representation; (middle) learning
abstracted skills with an agent-agnostic action representation; and (right) retargeting the abstracted skills to a robot.

B. Reward Generation for Skill Learning

Skill learning with model-free Reinforcement Learning
(RL) is labor intensive for its requirement of an expert-
designed task- and embodiment-specific reward. Tackling
this problem requires an autonomously generated reward
function for decision-making in each task.

Foundation models like LLMs are capable of directly gen-
erating reward functions given the task description [10, 30–
32]. However, without environmental awareness, their effi-
ciency is diminished by the necessity of expert feedback [10].
Moreover, this approach often depends on the environmental
states, typically inaccessible in the real world.

Perceptual rewards offer a promising alternative for skill
learning. By watching videos of humans performing each
task [11], robots learn an implicit embedding that reflects
how events progress in video and use it as a flexible form of
reward [8, 33, 34]. Extending beyond these, researchers pro-
pose to learn the temporal dynamics not in task-specific clips
but from videos across different tasks to form a task-agnostic
visual representation exhibiting greater generalizability [9].

Building upon these advancements, our work isolates
agent-aware information from the visual reward to further
enhance its robustness and generalizability.

C. Agent-Agnostic Representation

The principle of abstracting actions, objects, and tasks
into agent-agnostic representations decouples them from
the constraints of specific robotic articulations or sensor
configurations. This methodology enhances adaptability and
transferability across robotic platforms and even human con-
texts by disentangling low-level perception and control from
the modeling, focusing on high-level action abstractions.

A manipulation task can be abstracted to the desired
state changes of the world over time [35], which minimizes
the direct involvement of an agent. To further describe the
interaction between the agent and the object while remaining
agent-agnostic, interaction regions (commonly identified as
affordances) and trajectories [2, 17, 36–40] define how tasks
are performed without relying on the robot’s specific motor
controls. To represent the interaction region, a simple yet
effective way is to use contact points to specify the required
contacts between the finger and object [38, 40–42], which
is suitable for simple end-effectors like parallel grippers or
suckers. In contact-rich interactions, contact maps become
necessary to capture the detailed contact or the precise
distances from the object surface to each finger [17, 43].

III. METHOD

We investigate the problem of robotic manipulation learn-
ing where expert demonstrations are unavailable. Specifi-
cally, given a robot and an image of a desired goal state, we
are tasked to learn the robot’s motion to accomplish the goal.
We devise Ag2Manip: Agent-Agnostic representations for
Manipulation. Figure 2 illustrates our method’s framework.
Our approach features two innovative concepts: an agent-
agnostic visual representation (Sec. III-A) that bridges the
domain gap between humans and robots and an agent-
agnostic action representation (Sec. III-B) that abstracts robot
actions into a universal proxy agent’s action. Leveraging
these representations, we employ reinforcement learning to
derive a manipulation policy within this abstracted action
space, guided by a unique reward function rooted in our
agent-agnostic visual framework (Sec. III-C). We then re-
target the proxy agent’s trajectory to a robot trajectory by



Inverse Kinematics (IK) (Sec. III-D).

A. Agent-Agnostic Visual Representation

Building on visual representations pre-trained on human
demonstrations [8, 9], our objective is to develop an agent-
agnostic visual representation that bridges the domain gap
between human and robot manipulations. This approach
aims to enhance the applicability and effectiveness of these
representations in robotic contexts, enabling a more flexible
acquisition of manipulation skills.

Data Pre-processing: We consider a set of human
demonstration video data D “ tvc :“ poc1, o

c
2, ..., o

c
nc

quNc“1,
where ocf PRHˆWˆ3 is the f -th raw frame in the c-th video
clip vc that describes how a human completes a manipulation
task. Inspired by Bahl et al. [2], we initiate this process
by segmenting the human body from each frame using the
ODISE algorithm [44]. Following segmentation, we employ
a video inpainting model, E2FGVI [45], to fill in the areas
previously occupied by the human. This approach not only
removes the human from the video but also ensures a
smooth temporal coherence between frames, resulting in a
manipulation dataset Da that is effectively agent-agnostic.

Time-Contrastive Pre-training: Given the agent-
agnostic demonstration dataset Da, we aim to learn an
encoder Fϕ : RHˆWˆ3 ÑRK that maps a visual observation
into a latent embedding, where K denotes the embedding
dimension. Following Nair et al. [8], we minimize the time-
contrastive loss [46] Ltcn and the regularization penalty Lreg:

L“λ1Eoci ,o
c
j ,o

c
k
,o‰c

l
„DaLtcn `λ2Eo„DaLreg, (1)

where poci , o
c
j , o

c
kq „ vc indicates a set of temporally ordered

3-frame samples, and each sample in a set is drawn from
the same video clip vc to ensure task proximity. o‰c

l is a
negative sample from a disparate video clip.

The time-contrastive loss is designed to guide the repre-
sentation so that frames temporally closer to each other are
mapped closer in the embedding space, compared to frames
that are temporally distant or from disparate video clips:

Ltcn “ ´ log
eSpzci ,z

c
jq

eSpzci ,z
c
jq `eSpzci ,z

c
kq `eSpzci ,z

‰c
l q

, (2)

where Sp¨, ¨q represents the similarity metric between two
embeddings, zci “Fϕpoci q denotes the embedding of oci ex-
tracted from the encoder Fϕ. The regularization loss encour-
ages a more compact embedding space:

Lreg “ }Fϕpoq}1 `}Fϕpoq}2. (3)

B. Agent-Agnostic Action Representation

We abstract robotic manipulation learning with an agent-
agnostic action representation, where the motion and force
of a universal free-floating proxy agent summarize a robot’s
action. We split the learning into two phases: exploration
and interaction. The exploration phase explores the proxy’s
position, and the interaction phase investigates the proxy’s
force exerted on the environment. For each task represented
by a goal image, we learn an RL policy across both phases to

minimize the embedding distance between the agent-agnostic
visual representations of the current and the goal image.

The Exploration Phase: In the exploration phase, we
abstract the robot into a universal proxy agent, an agent-
agnostic sphere to represent its end-effector, and abstract the
robot’s action into a sequence of positions of the sphere.

We then control the proxy using a proportional-derivative
(PD) controller [47]. Note that the proxy has a collision
volume with a radius of re, representing its body. The
exploration phase halts when the proxy enters a precomputed
interactable region in the environment, where the interaction
phase begins. Since we only consider robots with two-finger
grippers in this work, we consider interactable regions to be
regions where parallel grasps are highly likely to succeed.
Specifically, given the point cloud scan of the environment,
we extract the interactive regions as regions with a radius of
rint near possible grasping poses detected by GraspNet [48].

While our implementation employs parallel grasp detec-
tion for efficiency, it’s important to note that general-purpose
methods, such as GenDexGrasp [17], can also provide effec-
tive interactable regions for various dexterous manipulators.

The Interaction Phase: Once the proxy agent enters
an interactable region, we consider a grasp available and the
object attached to the agent. We then enter the interaction
phase, where we focus on the motion of the object. We
abstract the robot’s action space into the force exerted on
the environment by the proxy.

C. Reinforcement Learning and Reward Shaping

Given a goal image g PRHˆWˆ3, our task is to ac-
complish the task it represents. We use a model-free and
GCRL framework to learn the agent-agnostic action policy
π “ tπexp,πintu, with πexp and πint denoting the proxy
agent’s policies for the exploration and interaction phases,
respectively. The policy π takes the robot states rt and the
environment’s states st at frame t as its observation and
produces the action at “ patp, a

t
f q, where atp PR3 indicates

the proxy’s desired position in exploration and atf PR3

indicates the proxy’s intended force in interaction. A PD
controller then guides the proxy to achieve the target action.

To reach the goal depicted by g, we focus on maximizing
the similarity Spzt, zgq between the embeddings for current
and goal images ot and g. Recognizing that directly employ-
ing S as a reward function could inappropriately penalize
trajectories close but not identical to optimal, we introduce
an importance-weighted reward function to promote explo-
rations leading to states that improve upon the initial state:

Rpot, g;ϕq “ exp

ˆ

`

1`α ¨1Spzt,zgq´βą0

˘ Spzt, zgq´β

β

˙

´1, (4)

where β “Spz0, zgq is the similarity between the embed-
dings of the initial and goal images, and αą 0 is a tunable
hyperparameter. With the indicator function, the proposed re-
ward function emphasizes states closer to the goal image than
the initial state and reduces penalties for those that diverge
from the goal. This approach encourages more explorations
from the proxy and is especially crucial during the early



phase of learning with random policy behaviors.
For policy optimization, we utilize Proximal Policy Opti-

mization (PPO) [49], chosen for its training stability and ef-
ficiency in convergence. Through PPO, we aim to maximize
the expected cumulative reward E

”

řT´1
t“0 γtRpot, g;ϕq

ı

,
thereby effectively guiding the policy π towards the goal.

D. Robot-Specific Action Retargeting

We implement a straightforward retargeting policy to
adapt the proxy’s trajectory generated by π to real robots,
converting proxy actions into robot-specific movements.

In the exploration phase, we directly map the proxy
agent’s positions to the robot’s end-effector positions, ef-
fectively translating the proxy’s trajectory into the end-
effector’s motion. As we transition from exploration to
interaction, we align the end-effector’s 6D pose with the
nearest grasping pose identified by GraspNet, a feasible step
given the transition occurs only when a viable grasp pose
is within reach. For the interaction phase, the end-effector’s
6D trajectory is derived from the moving object’s trajectory,
ensuring the robot’s actions are synchronized with the target
object’s dynamics. We solve the robot arm’s trajectory using
IK, thereby ensuring the practical execution of the task in
alignment with the proxy’s movements.

E. Implementation Details

In Sec. III-A, we choose Epic-Kitchen [11] as the human
demonstration dataset. Echoing the choices of R3M [8] and
VIP [9], we use a standard ResNet50 [50] as the architecture
of the visual encoder Fϕ. We use the negative L2 distance
to measure similarity Sp¨, ¨q. The weights for our learning
objective are set to λ1 “λ2 “ 1.0. The visual encoder is
optimized using an Adam optimizer, with a learning rate
set at 10´4, and the process is run for 24 hours on a single
NVIDIA A100 GPU. In Sec. III-B, we define the proxy’s
collision radius re as 2 centimeters and its interactive region
radius rint as 10 centimeters. In Sec. III-C, we empirically
set α“ 3.0 for our reward function across all tasks.

IV. EXPERIMENTS

To thoroughly evaluate the capabilities of our proposed
method, we implemented extensive tests across various tasks
and environments. We observe that our method notably en-
hanced the success rates, from a baseline of 18.5% to an im-
pressive 78.7% across tasks from three distinct environments.
We further evaluate the quality of our visual representation
and record a substantial boost in imitation learning success
rate from 50% to 77.5%. These remarkable advancements
underline not only the efficacy of our approach but also its
potential to significantly impact practical applications.

A. Experimental Setup

Evaluation Environments: To evaluate our method’s
effectiveness across a broad spectrum of manipulation tasks,
we selected 24 tasks from three distinct simulation envi-
ronments: FrankaKitchen [13], ManiSkill [14], and Part-
Manip [6], encompassing a diverse array of actions (e.g.,

opening, pulling, moving) and interacting with various ob-
jects (e.g., cabinets, microwaves, kettles). These tasks were
executed using a 9-DOF Franka Emika robotic arm and
gripper, representing a standard robotic manipulation setup.

We conducted all experiments within the NVIDIA Isaac-
Gym, a GPU-accelerated simulator that facilitates rapid
learning through reinforcement learning techniques. The
robot was initialized in a default state for consistency across
tasks, with each task defined by a goal state illustrated
through an image rendered from one of three preset camera
angles (front, left, right). A task is considered successfully
completed when the relevant object or part achieves the goal
state within a margin of error.

For a robust evaluation, each of the 24 tasks was tested
under nine different configurations with varying camera
perspectives and initialization seeds (3 cameras × 3 seeds) to
ensure comprehensive assessment under varying conditions.

Baselines and Ablations: We compare our method
against two important baselines, R3M [8] and VIP [9], which
both used agent-aware visual representations for manipula-
tion skill learning through time-contrastive learning objec-
tives. Additionally, we benchmark Eureka, a recent method
notable for its autonomous skill acquisition capabilities,
utilizing LLMs to generate reward functions automatically,
showcasing its relevance as a strong competitor.

For consistency and fairness in evaluation, all methods
except Eureka utilize a ResNet50 visual backbone and are
trained on the Epic-Kitchen dataset. We disabled the human
feedback for Eureka to exclude task-specific expert knowl-
edge. This ensures that comparisons emphasize the intrinsic
capabilities of each method’s learning strategy.

In our ablation study, we remove components from
our method to investigate their effectiveness independently.
“Ours w/o Act.Repr." learns directly in the robot’s original
action space while using the agent-agnostic visual represen-
tation. “Ours w/o Rew.Shp." replaces the specialized reward
function with a basic similarity measure. We don’t test the
effect of removing only the visual representation because
calculating agent-aware visuals is not feasible without agent-
aware actions. We also omit the option of removing both
representations as they directly resemble the R3M baseline.
Further, to probe the performance drop during retargeting,
we evaluate the performance of the proxy agent without
retargeting its actions to a robot, denoted as “Ours (Proxy).”

Due to space constraints, we consolidate the quantitative
results of our experiments in Tab. I, providing a comprehen-
sive overview of our findings.

B. Comparative Study Results

Tab. I shows the average task success rates within and
across all 3 environments. Our method, Ag2Manip, achieves
an impressive overall task success rate of 78.7%, signifi-
cantly outperforming baseline methods (11.1%, 12.0%, and
18.5%). We further report task-specific success details and
reveal the notable distinctions of each method’s capabilities.
We observe that the baseline methods consistently fail to per-
form tasks involving fine-grained robot-object interactions.



TABLE I: Main comparison and ablation study. All tasks have been tested on 3 seedsˆ3 cameras “9 runs and the numbers 0´9
represent the number of successful runs. We use the characters a - x to specify different tasks. Tasks from FrankaKitchen [13]: a:
open hinge-cabinet b: open microwave c: open slide-cabinet d: close hinge-cabinet e: close microwave f: close slide-cabinet
g: move kettle h: pick up kettle i: turn on switch j: turn off switch. Tasks from ManiSkill2 [14]: k: open door l: close door m:
pick up cube n: stack cube o: pick up clutterycb p: insert peg q: turn left faucet r: turn right faucet. Tasks from PartManip [6]:
s: turn down dishwasher t: pull drawer u: turn up dishwasher v: push drawer w: press button x: lift lid.

Method FrankaKitchen ManiSkill PartManip Overall
a b c d e f g h i j Avg. k l m n o p q r Avg. s t u v w x Avg.

R3M [8] 0 0 0 3 2 0 1 0 0 0 6.7% 0 6 0 0 0 0 0 0 8.3% 0 0 3 9 0 0 22.2% 11.1%
VIP [9] 0 0 0 2 6 0 3 0 0 0 12.2% 0 6 0 0 0 0 0 0 8.3% 0 0 0 9 0 0 16.7% 12.0%

Eureka [10] 0 0 0 7 3 2 3 0 0 0 16.7% 0 9 0 0 0 0 0 1 13.9% 0 0 3 6 0 0 20.0% 18.5%

Ours w/o Act.Repr. 4 1 8 9 9 9 9 1 7 2 65.6% 0 9 0 0 0 0 1 8 25.0% 0 0 8 9 0 0 31.5% 43.5%
Ours w/o Rew.Shp. 8 7 7 9 9 9 7 9 1 0 73.3% 9 9 8 0 3 1 4 5 54.2% 9 6 8 9 0 9 75.9% 67.6%

Ours 7 8 8 8 8 9 8 6 9 9 88.9% 7 9 6 0 7 2 8 8 65.3% 9 7 9 9 0 9 79.6% 78.7%

Ours (Proxy) 8 9 9 8 9 9 9 9 9 9 97.8% 7 9 5 5 7 3 8 9 73.6% 9 9 9 9 0 8 81.5% 85.7%
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Fig. 3: Qualitative results of our simulated experiments. Top four rows are successful executions, and bottom row shows failures.

For instance, tasks such as opening a door or picking up
a kettle, which necessitate preliminary attachments of the
interested parts, often fail the baselines. Interestingly, we
find similar failures occurring with Eureka. We attribute this
to the lack of expert-in-the-loop interaction, which limits
Eureka’s ability to provide high-quality reward terms. In
contrast, Ag2Manip effortlessly learns these skills benefiting
from the agent-agnostic visual and action representations.

Despite these successful trials, Ag2Manip consistently
encounters difficulties with three tasks: stacking cubes, in-
serting pegs, and pressing buttons. These failures stem from
various challenges: collisions involving the robot arm during
the retargeting process for stacking cubes, complex object-
object interactions that fall outside the training distribution
for inserting pegs, and insufficient visual guidance due to
sudden and minimal appearance change for pressing buttons.
Addressing these issues could involve the adoption of more
advanced planning algorithms, training the visual representa-
tion on a broader range of human demonstration videos, and
incorporating extra guiding elements like the end-effector’s
intended trajectory for improved task execution.

We also visualize some manipulation trajectories learned
by Ag2Manip in Fig. 3. We showcase Ag2Manip’s robust
performance in manipulating rigid and articulated objects

in Fig. 3 (a-l), and failure cases in Fig. 3 (m-o).

C. Ablation Study Results

Replacing the specialized reward function with a simple
similarity metric (Ours w/o Rew.Shp.) resulted in a no-
ticeable 11.1% decrease in the overall task success rate.
This underscores the crucial role of our reward shaping
in handling complex tasks, particularly those requiring fine
maneuvers, such as turning and picking. Removing agent-
agnostic action representation (Ours w/o Act.Repr.) resulted
in a more pronounced decrease in success by 35.2%. This
highlights how essential the agent-agnostic action represen-
tation is for Ag2Manip’s effectiveness, especially in tasks
requiring a firm grip, like pulling and opening. We also
observe that this ablation shows a 32.4% improvement over
the R3M baseline, indicating the improvement brought by
our agent-agnostic visual representation.

We further assess the performance of the agent-agnostic
proxy agent prior to its retargeting onto the robot (labeled
as ”Ours (Proxy)”). This result shows that the retargeting
process caused a 7.0% drop in success rate, underscoring
areas for potential improvement in our method.



TABLE II: Task progress consistency of visual representation.

Method FrankaKitchen ManiSkill PartManip Overall

ResNet50 [50] 0.535˘.169 0.407˘.182 0.202˘.197 0.418˘.199

CLIP [52] 0.627˘.086 0.381˘.139 0.347˘.151 0.490˘.134

R3M [8] 0.498˘.190 0.393˘.191 0.525˘.123 0.474˘.177

VIP [9] 0.496˘.246 0.251˘.178 0.386˘.121 0.401˘.208

Ag2Manip 0.828˘.082 0.696˘.182 0.618˘.227 0.740˘.153

TABLE III: Real-world experiment results.

Method PushDrawer CloseCabinet PickBag MoveBasket

ResNet50 [50] 1 ⁄ 10 5 ⁄ 10 1 ⁄ 10 1 ⁄ 10
CLIP [52] 2 ⁄ 10 3 ⁄ 10 0 ⁄ 10 0 ⁄ 10
R3M [8] 4 ⁄ 10 5 ⁄ 10 4 ⁄ 10 3 ⁄ 10
VIP [9] 6 ⁄ 10 6 ⁄ 10 2 ⁄ 10 6 ⁄ 10

Ag2Manip 7 ⁄ 10 8 ⁄ 10 8 ⁄ 10 8 ⁄ 10

D. Additional Evaluations for the Visual Representation

We further evaluate the quality of our agent-agnostic visual
representation in two additional experiments.

Task Progress Consistency: To assess if our visual
representation consistently reflects the progress of a ma-
nipulation task, we analyzed expert trajectories using the
Spearman Rank Correlation [51]. This method compares the
temporal order of video frames against how similar each
frame is to the task’s goal state. Effectively, we’re checking
if earlier frames are generally less similar to the goal than
later frames, as expected in a successful task progression.

We compare our approach against well-established base-
lines, including ResNet50 [50] pre-trained for ImageNet clas-
sification, CLIP [52, 53], R3M [8], and VIP [9], all of which
have found applications in robotic control. These baselines
provide comparisons among visual representations trained
for diverse purposes, from fundamental image recognition to
specialized robotics applications. We evaluate the baselines
on a total of 72 expert trajectories, with three trajectories for
each of the 24 tasks used in the above experiments.

Our findings, detailed in Tab. II, show that our agent-
agnostic visual representation aligns more consistently with
the expected progression of manipulation tasks over time
compared to these baselines. This suggests our method offers
clearer, more reliable guidance for learning manipulation
tasks, enhancing the robot’s ability to understand and com-
plete tasks based on visual input.

Efficiency on Real-World Imitation: In our final ex-
periment, we assess our visual representation’s effectiveness
in real-world few-shot imitation learning. As shown in Fig. 4,
we set up a Franka Emika FR3 robot and a Kinect Azure
camera, and evaluate four manipulation tasks: PushDrawer,
CloseDoor, PickBag, and MoveBasket. We collect 20 demon-
strations per task for imitation learning.

We adopt the advantage-weighted regression [54] ap-
proach that focuses on transitions that significantly progress
the task. This method calculates weights by comparing the
current and next observations to the goal, encouraging the
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Fig. 4: Real-world experiment setup.

robot to prioritize actions that move toward task completion.
Our setup and results are detailed in Tab. III and Fig. 4.

We found that our agent-agnostic visual representation more
accurately assigns regression weights, leading to better per-
formance over baselines such as ResNet50 and CLIP, which
lack task-specific pre-training, and R3M and VIP, which
perform relatively well except in certain tasks. Our method
effectively bridges the domain gap between the training data
and inference observations, capturing essential action trajec-
tories for task completion in few-shot learning scenarios.

V. CONCLUSION

We present Ag2Manip as a pioneering approach for robots
to acquire diverse manipulation skills autonomously, without
relying on expert demonstrations. This method integrates
innovative agent-agnostic visual and action representations,
effectively overcoming the domain gap between different em-
bodiments and tackling the high precision demands of robotic
manipulations. Through both simulated and real-world as-
sessments, Ag2Manip demonstrates notable enhancements
in the learning of robotic manipulation skills. It facilitates
the independent learning of new manipulation abilities in
robots, marking a substantial stride towards creating versatile
embodied agents capable of adapting to novel challenges.
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