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Fig. 1: Demonstration of PreAfford. Adopting a relay training paradigm, two successive modules collaborate to handle the grasping
tasks of ungraspable objects. Considering different environmental features (edge, slope, slot and wall), the pre-grasping module proposes
a pre-grasping strategy to facilitate a successful grasp, while the grasping module generates rewards to train (depicted as teach in the
figure) the pre-grasping module. The two color bars correspond to the pre-grasping and grasping phases, respectively. They indicate the
affordance values, with higher values suggesting better conditions for interaction.

Abstract— Robotic manipulation of ungraspable objects with
two-finger grippers presents significant challenges due to the
paucity of graspable features, while traditional pre-grasping
techniques, which rely on repositioning objects and leveraging
external aids like table edges, lack the adaptability across
object categories and scenes. Addressing this, we introduce
PreAfford, a novel pre-grasping planning framework that
utilizes a point-level affordance representation and a relay
training approach to enhance adaptability across a broad range
of environments and object types, including those previously
unseen. Demonstrated on the ShapeNet-v2 dataset, PreAfford
significantly improves grasping success rates by 69% and
validates its practicality through real-world experiments. This
work offers a robust and adaptable solution for manipulating
ungraspable objects.

I. INTRODUCTION

Consider a robotic arm equipped with a two-finger gripper
attempting to grasp a mobile phone lying flat on a surface
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(Fig. 2(a)). The close contact between the phone and the
table results in a scarcity of graspable features, leading to an
ungraspable scenario [1]. Ungraspable situations occur when
an object’s 6-DoF pose relative to its surroundings hinders
direct grasping. Such challenges are common not only with
flat objects like mobile phones, keyboards, and scissors but
also with items such as hats or inverted bowls placed on a
table, as the graspable edges are in intimate contact with the
supporting surface.

Drawing from the experience of human object manipula-
tion, a viable strategy is to move the flat objects to table
edge, which enables an effective grasp from the hanging off
part. This solution, known as a pre-grasping manipulation,
plays a crucial role as a preliminary step for grasping manip-
ulation in ungraspable situations [2].As shown in Fig. 2(b-
e), different environmental features (a.k.a. extrinsic dexterity
[3, 4]), can be utilized to transform the object into a favorable
configuration for a successful grasp.

Studies have demonstrated that pre-grasping manipula-
tions, including pushing [7], rotating [1, 6], and sliding [5]
[10], can significantly improve the success rate of grasping
manipulation [8]. However, three limitations still wait to
be addressed: (i) Adaptability. Previous research mainly
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Fig. 2: Demonstrations for pre-grasping leveraging environmental
features: (a) Ungraspable situation of lying flat on floor, (b) Side-
grasping an overhanging part, (c) Grasping an angled part protrud-
ing from a slot, (d) Grasping the middle of the phone suspended
on a slope’s foot, and (e) Pinning the phone against a wall and
grasping from the opposite side.

focuses on task-specified settings, which rely heavily on
manually programmed criterion for pre-grasping manipu-
lation success, and cannot adapt across object categories
and environments [1, 2, 5, 7, 11]. (ii) Deployablity. Methods
for pre-grasping planning often has difficulty to transfer to
real-world experiments, due to their reliance on privileged
information from simulators or the need to customize rep-
resentations for specific experimental setups. [5, 6, 6, 8]. (iii)
Compatibility. To reduce the cost of robotic control, pre-
grasping manipulation should be skipped on easy-to-grasp
objects. But the mechanism for checking the necessity of
pre-grasping is often not enabled in previous work [1, 2, 5–
7, 11, 12].

As none of the previous work has achieved adaptability,
deployability, and compatibility simultaneously, we present
PreAfford to fulfill the requirements. The adaptability of
PreAfford mainly originates from a novel relay training
paradigm along with a dual-module framework, resulting in
an intuitive and robust reward function - the improvement
in grasping success likelihood - which is robustly evaluated
by the grasping module. High deployability and real-world
adaptability are enabled by adopting a point-level affordance
visual representation [12–14], which only takes RGB-D data
as input. To enable a direct grasp on easy-to-grasp objects for
compatibility, a pre-grasping necessity check is introduced at
the beginning of our inference procedure.

By training and testing on a large-scale offline dataset
based on ShapeNet-v2 [15] across 5 scenes, simulations
demonstrated that a PreAfford increases the grasping
success rate by 69% on test object categories. The pre-
grasping and grasping affordance maps, as illustrated in
Fig. 5, reveal that our models have a deep understanding of
object geometries and environmental features of the system.
Furthermore, PreAfford exhibits the capability to choose
a pre-grasping policy in unseen complex environments. The
deployability of our framework has been validated through
real-world experiments across 5 setups.

To sum up, our key contributions are:
‚ A novel, adaptive, and deployable pre-grasping frame-

work compatible with easy-to-grasp objects.
‚ A robust relay training paradigm for pre-grasping ma-

nipulation.
‚ Point-level affordance representation enabling detailed

geometry awareness and seamless deployment.
‚ Extensive validation of PreAfford in simulated and

real-world settings, demonstrating emergent capabili-
ties.

II. RELATED WORK

A. Pre-Grasping Tasks

Pre-grasping, a concept inspired by the observation that
humans often pre-manipulate objects [16, 17] – for instance,
sliding flat objects to the edge of a table for easier grasping
– necessitates that robot manipulators adjust the pose of the
object before the final grasp [2, 7, 9, 11, 17, 18].

In Tab. I, we briefly review previous pre-grasping strate-
gies. One line of research focuses on changing the pose
of the object to a configuration that can be grasped more
easily, primarily through rotation [5, 6, 19]. Other works
concentrate on pre-grasping with extrinsic dexterity [3, 4, 8],
which utilizes surrounding environmental features to assist
in achieving an easier grasp [1, 2, 8]. Extensive research has
also been conducted on cluttered objects on tables, which
cannot be grasped due to overlapping but can be grasped by
rearranging the objects [7, 9, 20].

The key aspect of pre-grasping research is the design of the
reward function for a pre-grasping manipulation. Since the
graspability of an object posed in a certain environmental
configuration cannot be easily defined, the reward is typi-
cally approached in two ways. The first approach involves

TABLE I: Comparison of Related Pre-Grasping Research. This table presents a concise comparison of various pre-grasping studies,
highlighting their key features and limitations. The last three columns assess each study’s adaptability across object categories and
environments, compatibility with existing grasping pipelines through an explicit procedure to skip the pre-grasping step, and deployability
in real-world experiments without requiring customized shape representations [5] or identical setups to simulators [6].

Method End Effector Pre-grasping
Manipulation Method Scenario Adaptability Compatibility Deployability

Ren et al. [7] Two-finger gripper Pushing DRL Clustered objects × ✓ ✓
Sun et al. [1] Spherical Rotation DRL Cuboid in corner × × ✓

Kappler et al. [2] Dexterous hand Pushing Data-driven approach Cuboid on table × ✓ ×
Chen et al. [8] Dexterous hand finger contact Learning-based framework Ungraspable cases ✓ ✓ ×
Hang et al. [5] Two-finger gripper Sliding Integrated planning Thin objects on table × × ×
Chang et al. [6] Two-finger gripper Rotation Opt. for payload Transport tasks × × ×
Wang et al. [9] Two-finger gripper Pushing DRL Clustered objects × ✓ ✓

Ours Two-finger gripper Pushing Dual-module
affordance map Ungraspable cases ✓ ✓ ✓



manually programming the reward using methods such as
pre-defined goal regions [5] or specific pose transitions of
the object and gripper [1, 11]. However, these methods are
often limited to the specific task settings in the research
and lack the ability to adapt to unseen object categories and
environments. The second approach relies on the output of
pre-trained neural networks to estimate the graspability of
an object at a given pose [6–8]. However, prior knowledge
from simulators, like signed distance functions [8] or exact
object and environment geometry [6], is used in these studies,
making it difficult to transfer to real-world experiments,
which requires the deep understanding of scenes [21–24].

Furthermore, we found that an option to skip the pre-
grasping procedure for objects that can be grasped directly
with high confidence of success is often neglected [6–8], thus
making the pre-grasping framework redundant for most daily
graspable objects and increasing the cost of robotic control.
No previous work has simultaneously achieved adaptability
across object-environment configurations, compatibility with
graspable situations, and deployability in real-world experi-
ments.

B. Point-Level Affordance for Robotic Manipulation

Affordance, defined as the action possibilities associated
with an object or environment to an agent [25–29], plays a
crucial role in robotic manipulation. In point-level affordance
learning, we learn dense affordance maps as the actionable
visual representations to suggest action possibilities at every
point in point clouds of 3D objects. Recent literature has
applied point-level affordance learning to various scenarios
[13, 14, 26, 30–36], providing dense and actionable informa-
tion for downstream executions.

Numerous empirical investigations have demonstrated that
point-level affordance exhibits a robust geometry-aware ca-
pability, as evidenced by its effective generalization across
both within-category [12, 37] and inter-category [14, 30, 35,
38] scenarios, showcasing its adaptability to novel objects.

Our work further extends point-level affordance to guiding
pre-grasping manipulations, which considers diverse geome-
tries and diverse kinds of environments, demonstrating that
point-level affordance handles more complicated scenarios
with high accuracy and promising generalization ability.

III. METHODOLOGY

We formally define core concepts of PreAfford in
Sec. III-A, describe the overall framework in Sec. III-B,
elaborate the network architectures in Sec. III-C, introduce
inference procedure in Sec. III-D and training losses in
Sec. III-E, and show our approach to collect data in Sec. III-
F.

A. Preliminaries

Pre-Grasping Tasks: The primary goal of pre-grasping
manipulation is to alter the objects’ poses to increase the
likelihood of a successful grasp. We particularly focus on
the exploitation of environmental features.

Recognizing that a single push action can achieve the
repositioning of objects, we define a pre-grasping operation
P as a push with offset ∆x⃗1 at contact point p⃗1

P “ pp⃗1,∆x⃗1q “ px1, y1, z1,∆x1,∆y1q, (1)

where p⃗1 “ px1, y1, z1q and ∆x⃗1 “ p∆x1,∆y1q denote the
contact point location and horizontal displacement, respec-
tively. The pushing direction is by default set to be horizontal
and the gripper remains closed.

In our research, the reward for a pre-grasping action is
evaluated by the increase in the graspability score yielded by
the grasping module, as shown in Eq. (7). We define a pre-
grasping manipulation as successful if the score increases by
more than 40%. Two safety-critical situations are considered
as failure cases: (a) the object falling off the table, and (b)
collision between the gripper and the slope or wall.

Scene-aware Grasping: Grasping tasks involve identi-
fying an optimal manipulation, G, based on environmental
information E and object information O. In contrast to
object-centric grasping tasks, the environment plays a crucial
role in scene-aware grasping, imposing constraints such as
external visibility and kinematic feasibility [8, 34].

In PreAfford, E and O are dipicted as point clouds and
a grasp G is defined by six parameters

G “ pp2, θ⃗2q “ px2, y2, z2, α, β, γq. (2)

where p2 “ px2, y2, z2q is the contact point and θ⃗2 “ pα, β, γq

is the Euler angles of the grasp orientation. When the gripper
closes, it moves vertically by ∆z2 and and maintains its grip
for a duration ∆t. A grasp is labelled as successful if the
object is lifted with a vertical displacement exceeding θv
and the rotation

a

α2 `β2 `γ2 within θr2.

B. Overview of the PreAfford Framework

Fig. 3 illustrates the PreAfford framework. We divide
the task into two main phases: pre-grasping and grasping,
managed by the pre-grasping module and grasping module,
respectively. Within each module, three specialized neural
networks, inspired by Where2Act structure [30] are em-
ployed: an affordance network (A), a proposal network (P),
and a critic network (C).

The training and inference processes operate in opposite
directions, and we intuitively call this relay. Offline training
dataset is collected from simulation. In order to generate la-
bels for training the pre-grasping module, a grasping network
which can judge the success likelihood is trained firstly. Then
pre-grasping network is trained together with information
from simulation data and the output of grasping network.
In the prediction phase, two modules form a closed-loop
control. The pre-grasping module adjusts object’s pose until
it is suitable for grasping module to apply grasping.

C. Module Structure

Feature Extractors: Each network independently ex-
tracts features through its perception module, encoding ob-
ject and environment point clouds into fs PR160 using a
PointNet++ module with segmentation head [39]. We employ
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Fig. 3: The framework of PreAfford. Two modules are included, each containing an affordance network, proposal network, and critic
network. The three networks are responsible for choosing contact point, generating proposal and evaluating the proposal, respectively.
PointNet++ (PN++) and Multi-layer Perceptron (MLP) networks are used for processing point clouds and decision-making. In the inference
phase, the two modules process point clouds to devise strategies for pre-grasping and grasping. Conversely, during training, the grasping
module generates rewards to train the pre-grasping module, which we intuitively call relay.

various Multilayer Perceptron (MLP) networks for other
input features, encoding the contact point pi, the gripper
displacement ∆x⃗1 and the gripper orientation θ⃗2 into fpi

P

R32, fM1 PR32 and fM2 PR32.
Affordance Network: Both A1 and A2 predict an af-

fordance score Aippi|Oi, Eq P r0, 1s for specific contact point
pi. The A1 score assesses the suitability of contact points
for pre-grasping and the A2 score indicates the likelihood of
success for grasping. It is implemented as an MLP that takes
fs and fpi

as input. By aggregating the affordance scores,
we generate an affordance map, shown as Fig. 6.

Proposal Network: The network P1 outputs the grip-
per displacement ∆x⃗1 at the specified point p1. It was in
a cVAE [40] structure with 32 hidden dims, in which the
encoder maps fs, fp1

and fM1
into Gaussian noise z PR32

and the decoder reconstruct them. It’s the same for P2 except
that it receives and reconstructs gripper orientation θ⃗2.

Critic Network: The network C1 scores a pre-
grasping operation: C1ppp1,∆x⃗1q|O1, Eq PR, where the pair
pp1,∆x⃗1q is proposed by A1 and P1. And C2 evalu-
ates the likelihood of success of a grasping operation:
C2pp2, θ⃗2|O2, Eq P r0, 1s. The critic network is a sinle-layer
MLP that consumes fs , fpi

and fMi
.

D. Inference

The inference pipeline of PreAfford includes 4 stages,
we describe them respectively below.

Pre-grasping Necessity Check: Before pre-grasping
step, a necessity check is applied to decide whether pre-

grasping step could be skipped. To evaluate the graspability,
C2 takes in manipulation proposals generated by A2 and P2,
and gives success rate ĉ2 by averaging the scores:

ĉ2 “
1

n2m2

n2
ÿ

j“1

m2
ÿ

k“1

C2ppj2,P2ppj2, z
kq|O2, Eq. (3)

If ĉ2 passed a threshold θg , the object would be grasped
directly following the proposal with the highest critic score.

Pre-Grasping Manipulation Inference and Implemen-
tation: At the inference stage, the affordance network A1

evaluates the affordance value for each point, and the points
pj1pj “ 1, 2, . . . , n1q with the highest n1 scores are selected
as contact points. Next, the proposal network P1 generates
m1 pre-grasping manipulations ∆x⃗jk

1 pk “ 1, 2, . . . ,m1q for
each pj1, each associated with a randomly generated normal
distribution vector zjk1 . Finally, the critic network C1 selects
the optimal pair pj

˚

1 ,∆x⃗j˚k˚

1 to execute, where

pj1pO1q “ argmax
p1

pn1qA2pp1|O1, Eq, (4)

j˚, k˚ “ argmax
j,k

C1ppj1,P1ppj1, zkq|O1, Eq. (5)

This process modifies the object’s pose within the environ-
ment, yielding a new point cloud O2 that serves as input for
the grasping module.

Grasping Manipulation Inference and Implementation:
Same as mentioned in Sec. III-D, after pre-grasping step,

the object would be grasped by the manipulation with the
highest critic score produced by A2 and P2.



Closed-loop Control (optional): The inference
pipeline of PreAfford forms a closed-loop control system
that allows for additional pushing actions when a single pre-
grasping manipulation fails to achieve a graspable object
configuration. The process can be described as follows:

1) The grasping module first estimates the expected suc-
cess rate of the grasp ĉ2.

2) If the score is below the predefined threshold θ, the pre-
grasping module forms a manipulation that pushes the
object to a new position.

3) Go back to step 1 and re-evaluate ĉ2 in the new state.
4) Repeat steps 2-3 until the ĉ2 is high enough to attempt

the grasp.

E. Training and Losses

Critic Loss: The loss function of the critic network C2
is determined based on the outcome (success or not) of the
grasping manipulation, represented as r:

LC2
“ r logpC2pp2, θ⃗2qq`p1´rq logp1´C2pp2, θ⃗2qq. (6)

For C1, its loss is assessed by the extent to which the pre-
grasping manipulation enhances the success rate of a grasp.
We use the grasping module to evaluate, giving success rate
ĉbefore2 and ĉafter2 . And to ensure stable and safe pushing
actions, following situations are penalized in training process
by multiplying a penalty term p to the grasping success
likelihood enhancement ĉafter2 ´ ĉbefore2 .

‚ Displacement penalty. pd “ expp´|∆xgo|{aq, where
∆xgo is the relative displacement of grippers and object,
and a is a constant coefficient.

‚ Rotation penalty. pr “ expp´
a

α2 `β2 `γ2{bq, where
pα, β, γq represents the rotation in Euler angles, and b
is a constant coefficient.

‚ Safety penalty. ps is 1 by default, and will be set to
be 0 if one of the following situations happens: Object
falling off table, gripper colliding with a wall, gripper
colliding with a slope.

The total penalty term p is the multiplication of pd, pr and
ps. We use l1 loss for C1:

LC1
“

ˇ

ˇC1pp1,∆x⃗1|O1, Eq´p ¨ pĉafter2 ´ ĉbefore2 q
ˇ

ˇ (7)

Proposal Loss: P1 and P2 are implemented as cVAE.
Aimed at generating proper actions, the proposal network
has to reconstruct correct ones well, so only successful pre-
grasping and grasping manipulations are used in training.
The loss is set as the sum of geometric loss and KL diver-
gence loss. The prior one measures the difference between
reconstructed and the ground truth M̂i. The latter measures
the difference between the hidden layer distribution and the
normal distribution. The total proposal loss is:

LPi
“LgeopMi; M̂iq`DKLpqpz|pi, M̂i,Oi, Eq|N p0, 1qq.

(8)

Affordance Loss: Affordance score indicates the suit-
ability of contact point and help to choose the contact point.
It evaluates how well the action proposed by Pi work and
that can be scored offline by the critic network [30]. The
affordance network is trained after the other two networks
in each module. Data is labeled by the average critic score
âpi of ni motion generated by Pi with different Gaussian
noise vector zjpj “ 1, 2, ¨ ¨ ¨ , niq:

âpi “
1

ni

ni
ÿ

j“1

Cippi,Pippi, zjq|Oi, Eq, (9)

LAi
“ |Aippi|Oi, Eq´ âpi

| . (10)

F. Data Collection

We use Sapien [41] to gather extensive data for pre-
grasping and grasping tasks, selecting 5 hard-to-grasp and 5
easy-to-grasp object categories from ShapeNet-v2 for train-
ing, with over 10 shapes for each category. A INSPIRE-
ROBOTS EG2-4C model is used for the gripper.

To generate an offline training dataset for the grasping
module, objects are generated at random positions across
four scenes, with chances of being posed upon environmental
features. Grasping points and gripper orientations are ran-
domly chosen from the object’s surface and the hemisphere
above the tangent plane at the point, respectively.

The pre-grasping module’s dataset focuses on the hard-
to-grasp categories. Objects are randomly posed within a
uniformly distributed distance from the environmental fea-
ture. The gripper performs a pushing action with a normally-
distributed displacement on random surface point. Collection
efficiency is boosted by over 42% by specifying the gripper’s
displacement direction towards environmental features for
30% of cases (using domain-specific prior knowledge). The
angle to the feature follows a Gaussian distribution.

For both datasets, the camera position is randomly gener-
ated, maintaining a distance between 3 and 5 meters from
the object, with the camera oriented towards the object. Each
dataset consists of 10,000 successful cases and 30,000 failure
cases, as the negative operational space is hard to cover.

IV. EXPERIMENTS

A. Environment Settings and Datasets

We tested PreAfford on 5 seen and 4 unseen categories
of hard-to-grasp objects across 5 scenes to demonstrate its
adaptability. These 5 scenes contain 4 scenes with a single

Central zone

Edge

Wall

(a) (b)

0 0.25 0.5 0.75 1

Fig. 4: Multi-feature case. (a) Rendered image of the complex
environment. (b) Point cloud and affordance hot map. Our method
can address the case that multiple environment features are simul-
taneously present.
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Fig. 5: Qualitative results. Both training and testing categories are showcased across four distinct scenarios: edge, slot, slope, and wall.
Affordance maps illustrate potential effective interaction areas. It can be observed that PreAfford yields reasonable pre-grasping and
grasping strategies across different object categories and scenes on both seen and unseen objects.

environmental features from edge, wall, slope, and slot, and
one novel scene (shown in Fig. 4) with 4 environmental
features simultaneously is also constructed for testing its
adaptability to unseen complex environment (labeled as
Multi below). We conducted 1,000 tests on each object-
environment pair, and calculate the mean success ratio. Other
experimental setups follow Sec. III-F.

B. Evaluation Metrics and Baselines

To evaluate the quality of a pre-grasping proposal, we
measure the increase in the sample success rate of the grasp-
ing action. After performing a pre-grasping manipulation, a
grasping proposal is generated using the grasping module,
and its success is tested. This test is repeated 1,000 times for
each object-environment pair to obtain a sample success rate.
The efficacy of the pre-grasping manipulation is then calcu-
lated by comparing the increase in the sample success rate to
the case without pre-grasping manipulation. For comparison,
we employ four baselines: (a) W/o pre-grasping: a direct
grasping manipulation without any pre-grasping action; (b)
Random-direction Push: the contact point is proposed by the
pre-grasping module of PreAfford, but the displacement

is set to a random direction; (c) Center-point Push: the
displacement is proposed by the pre-grasping module, but the
contact point is set to the object’s geometric center; and (d)
Ours w/o closed-loop: an ablation study on PreAfford that
eliminates the closed-loop control process. We demonstrate
the compatibility of PreAfford on 5 training and 4 testing
categories of easy-to-grasp objects.

C. Analysis

Efficacy and Adaptability: Fig. 5 presents the pre-
grasping and grasping affordance maps predicted by the
affordance networks and the proposed pre-grasping displace-
ment given by P1. We can conclude that our network exhibits
two key abilities: (a) Environmental awareness: The affor-
dance map assigns higher values to the side opposite the tar-
get environmental feature, with the proposed direction mostly
pointing towards the specific landscape. This indicates the
network’s ability to choose suitable pre-grasping policies
given the point cloud of the surrounding environment. (b)
Dynamics awareness: The network tends to propose pushes
on the side of thin objects, with the pushing direction roughly
passing through the object’s center of mass. This suggests an

TABLE II: Comparison with baselines. Pre-grasping significantly improves grasping success rates by 52.9%. Closed-loop strategy further
improves success rates by 16.4% over all categories.

Setting Train object categories Test object categories

Edge Wall Slope Slot Multi Avg. Edge Wall Slope Slot Multi Avg.

W/o pre-grasping 2.3 3.8 4.3 3.4 4.0 3.6 6.1 2.3 2.9 5.7 6.0 4.6
Random-direction Push 21.6 10.3 6.4 16.8 18.1 14.6 24.9 17.2 12.1 18.4 23.0 19.1

Center-point Push 32.5 23.7 40.5 39.2 39.0 35.0 25.1 17.4 28.0 30.2 21.5 24.4
Ours w/o closed-loop 67.2 41.5 58.3 76.9 63.6 61.5 56.4 37.3 62.6 75.8 55.4 57.5

Ours 81.4 43.4 73.1 83.5 74.1 71.1 83.7 47.6 80.5 83.0 74.6 73.9



(a) (b) (c) (d)

Fig. 6: Real world pre-grasping manipulation. Four pre-grasping cases with their affordance map are demonstrated: (a) Move a tablet
to table edge, (b) Push a plate towards wall, (c) Push a keyboard up onto a slope and (d) Slide a tablet into a slot. In these affordance
maps, areas marked in red signify the optimal locations for pushing. Point clouds are captured by Femto Bolt.

TABLE III: Real world experiment results.

Setting Seen categories Unseen categories

Edge Wall Slope Slot Multi Avg. Edge Wall Slope Slot Multi Avg.

W/o pre-grasping 0 0 0 0 0 0 10 0 5 0 0 3
With pre-grasping 70 45 80 90 85 74 80 30 75 90 85 72

awareness of dynamic behavior that could minimize object
rotation during the pushing process.

The adaptability of PreAfford is clearly illustrated by
reasonable pre-grasping proposals across different scenes
and object categories. Fig. 4 further demonstrates that when
an object is placed in a complex scene integrating four
environmental features, PreAfford can propose different
pre-grasping policies based on the object’s specific position
within the scene.

Tab. II quantitatively validate our method. The results
demonstrate that direct grasping attempts in ungraspable
situations are highly unlikely to succeed. The results on
Random-direction Push and Center-point Push strategies con-
firmed our observations regarding the environmental aware-
ness and dynamics awareness of PreAfford, respectively,
highlighting the importance of generating effective pushing
directions and selecting appropriate contact points regarding
surrounding landscape and dynamic features. Furthermore,
the ablation study w/o closed-loop, underscores the signifi-
cance of the closed-loop control process, demonstrating its
contribution to the success rates.

Compatability: As described in Section Sec. III-D,
cases with an estimated grasping success likelihood ĉ2
below a threshold θg trigger a pre-grasping manipulation.
The choice of θg is crucial for balancing compatibility
with graspable objects and initiating necessary pre-grasping
manipulations for ungraspable cases. Testing on both object
categories in the Multi scene, we found that setting θg to 0.8
achieves a fair balance, as shown in Tab. IV.

TABLE IV: Compatibility illustration. Below shows the rate
of performing a direct grasping manipulation on both graspable
and ungraspable objects. While θg “ 0.8, most ungraspable objects
would be pre-grasped, while graspable objects not.

Metric Train categories Test categories

Graspable Ungraspable Graspable Ungraspable

Pre-grasping rate 14.7 84.1 23.4 77.5
Success rate 83.7 74.1 80.0 74.6

Real-world Experiment Setup: We deployed our al-
gorithm on the AIRBOT Play robotic arm, a lightweight,
compact, six-degree-of-freedom manipulator. To generate
input point clouds, we utilized an ORBBEC Femto Bolt
camera for RGB-D data. An INSPIRE-ROBOTS EG2-4C
gripper is used as the end effector.

The experimental setup involves ten object categories,
with five categories seen during training and five unseen
during training, as shown in Fig. 7(a). To test PreAfford’s
adaptability, we constructed five scenes featuring different
environmental features, including edges, walls, slopes, slots,
and a Multi scene that integrated all four features, shown in
Fig. 7(b)-(f). Fig. 6 illustrates the pre-grasping and grasping
manipulations, along with the corresponding pre-grasping
affordance maps generated by our algorithm.

Laptop

Keyboard 
x 2

Phone x 2

Scissors

Hat

Knife x 2

Plate 
x 2

Tablet 
x 2

Calcula-
tor x 2

Book 
x 2

Edge

Wall

Slope

(a) (c)

(d)

(e)

(f)

Wall

Edge

(b)

Fig. 7: Real world experiment setups. (a) object categories used
for testing, (b) Multi scene with three environmental features (with
hardware settings including an AIRBOT Play robotic arm, an
INSPIRE-ROBOTS gripper, and a Femto Bolt RGB-D camera),
(c) Slope scene, (d) Slot scene, (e) Wall scene (with edge) and (f)
Edge scene. Note: (c-f) are not simulated.

Real-world Results: Tab. III presents the results of our
real-world experiments. We select 10 categories of objects,



perform 4 tests on each object in each scene, (i.e., 20 exper-
iments per scene). Our proposed framework, PreAfford,
highly improved the grasping success likelihood on those
hard-to-grasp objects in diverse categories, demonstrating
high deloyability in the real world.

V. CONCLUSION AND LIMITATION

In this paper, we propose a novel two-stage affordance
learning framework that achieves adaptability across object-
environment configurations, compatibility on graspable ob-
jects, and deployability to real-world experiments. This
framework is tested in both simulation and real-world ex-
periments, validating its efficacy.
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