
Zhao et al.: Tactile-Informed Prior-Free Manipulation of Articulated Objects 1

Tac-Man: Tactile-Informed Prior-Free
Manipulation of Articulated Objects

Zihang Zhao 1,2 ‹ Yuyang Li 1,2,3 ‹ Wanlin Li 2 Zhenghao Qi 1,3

zhaozihang@stu.pku.edu.cn liyuyang20@mails.tsinghua.edu.cn liwanlin@bigai.ai qi-zh21@mails.tsinghua.edu.cn

Lecheng Ruan 2� Yixin Zhu 1� Kaspar Althoefer 4

ruanlecheng@ucla.edu yixin.zhu@pku.edu.cn k.althoefer@qmul.ac.uk

‹ equal contributors � corresponding authors 1 Institute for Artificial Intelligence, Peking University
2 Beijing Institute for General Artificial Intelligence 3 Department of Automation, Tsinghua University

4 School of Engineering and Materials Science, Queen Mary University of London

(a) (b) (c)

(d) (e)

Fig. 1: Tactile-informed prior-free manipulation of articulated objects. Integrating GelSight-inspired tactile sensors into the robot’s
gripper enables precise manipulation of various articulated objects, eliminating the need for prior kinematic model knowledge. The
capabilities are showcased by (a) manipulating objects with prismatic joints, such as drawers; (b) handling objects with revolute joints,
such as microwave ovens; and managing complex mechanisms that involve simultaneous translational and rotational movements, as
exemplified by (c) an ice machine and (d) a vise. Additionally, the robot proficiently performs (e) simulated arbitrary trajectories. Detailed
trajectories and additional information are available in Supplementary Video S0. Complete URLs for all supplementary videos are listed
in Tab. A1.

Abstract—Integrating robotics into human-centric environ-
ments such as homes, necessitates advanced manipulation
skills as robotic devices will need to engage with articulated
objects like doors and drawers. Key challenges in robotic
manipulation are the unpredictability and diversity of these
objects’ internal structures, which render models based on
priors, both explicit and implicit, inadequate. Their reliability
is significantly diminished by pre-interaction ambiguities,
imperfect structural parameters, encounters with unknown
objects, and unforeseen disturbances. Here, we present a
prior-free strategy, Tac-Man, focusing on maintaining stable
robot-object contact during manipulation. Utilizing tactile
feedback, but independent of object priors, Tac-Man enables
robots to proficiently handle a variety of articulated objects,
including those with complex joints, even when influenced

by unexpected disturbances. Demonstrated in both real-
world experiments and extensive simulations, it consistently
achieves near-perfect success in dynamic and varied settings,
outperforming existing methods. Our results indicate that
tactile sensing alone suffices for managing diverse articulated
objects, offering greater robustness and generalization than
prior-based approaches. This underscores the importance of
detailed contact modeling in complex manipulation tasks,
especially with articulated objects. Advancements in tactile
sensors significantly expand the scope of robotic applications
in human-centric environments, particularly where accurate
models are difficult to obtain.

Index Terms—Articulated object manipulation, prior-free,
tactile sensing, contact regulation.
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I. Introduction

ARTICULATED objects, defined by interconnected parts
that move in conjunction with each other, include a

vast array of everyday items, such as doors, drawers, and
appliances, as illustrated in Fig. 1. Robots’ capabilities in the
manipulation of various articulated objects are essential for
effective integration into human-centric environments, assist-
ing humans in diverse tasks while representing a significant
challenge within robotics [1, 2].

To interact efficiently with these objects, robots tradition-
ally rely on prior knowledge of their kinematics. This knowl-
edge is often embedded either explicitly, as in kinematic
models used for designing manipulation strategies via control
or planning techniques [3–20], or implicitly, within policy
models developed through machine learning techniques [21–
38]. However, acquiring precise prior knowledge about such
objects presents several spatial and temporal challenges:
‚ Ambiguity: Objects with similar external appearances
may have vastly different internal structures, complicat-
ing the unique determination of their kinematics through
perception. This issue is extensively explored in Zhu et
al. [39].

‚ Imperfectness: Accurate acquisition of an object’s struc-
tural parameters is challenging due to perception noise or
deviation from standard models, such as the off-axis doors.

‚ Unknown: Certain objects feature unique and sophis-
ticated kinematics, making them difficult to model and
generalize, as exemplified by the objects in Fig. 1(c) and
(d).

‚ Obsolescence: Kinematic models can become outdated
due to active or passive changes over time, leading to a
gap in knowledge when executing manipulation tasks.

These challenges prompt us to question the hitherto assumed
indispensability of prior knowledge in the manipulation of
articulated objects and explore alternative approaches.

Drawing inspiration from human tactile interaction, we
propose a novel prior-free approach, Tac-Man. Tac-Man is
centered around stable robot-object contact during manipu-
lation, achieved through high-resolution tactile sensing. By
integrating GelSight-inspired sensors [40, 41] into the robot’s
gripper, Tac-Man adapts according to the tactile feedback
during the interaction, allowing for dynamic adjustment
during object handling. Without any prior-based modeling,
Tac-Man addresses the challenges posed by ambiguity, imper-
fectness, unknowns, and obsolescence in object kinematics,
which are prevalent in dynamic human-centric environ-
ments.

Our comprehensive validation includes a series of real-
world experiments as well as extensive simulation studies.
The experiments demonstrate Tac-Man’s proficiency in han-
dling objects with different joint types, from basic prismatic
and revolute joints to complex mechanisms with simultane-
ous translational and rotational movements. We conducted
further simulations to scale up these real-world experiments
and probe Tac-Man’s adaptability and robustness. Collec-
tively, these studies confirm the effectiveness of Tac-Man,

especially in scenarios where traditional reliance on priors is
unreliable or inadequate.
The present paper makes three major contributions:

‚ We introduce Tac-Man, a novel tactile-informed prior-free
manipulation framework for articulated objects. Unlike
traditional methods that depend on prior knowledge of
object kinematics, Tac-Man leverages tactile feedback to
dynamically maintain stable contact during the manipula-
tion process. This strategy ensures robust interaction with
objects by adapting to real-time tactile data, offering a
novel perspective on robotic manipulation.

‚ Through comprehensive real-world experiments, we val-
idate the superior performance of Tac-Man over con-
ventional methods in scenarios characterized by ambigu-
ous, imperfect, unknown, and obsolescent priors. These
experiments not only underscore Tac-Man’s adaptability
and precision in handling complex manipulations but also
demonstrate its potential in enhancing robotic autonomy
in unpredictable environments.

‚ We conduct an extensive simulation study to evaluate
the scalability and generalization capabilities of Tac-Man
across a diverse range of articulated objects and trajecto-
ries, including those arbitrarily generated. This study, one
of the largest of its kind, confirms Tac-Man’s effectiveness
in a broad spectrum of settings, illustrating its versatility
and the feasibility of its application in real-world scenarios
beyond the confines of controlled experiments.
The paper is organized to provide a thorough exploration

of Tac-Man and its implications. Sec. II reviews relevant
literature, positioning our work within the broader context
of robotic manipulation of articulated objects. Sec. III details
Tac-Man, our novel tactile-informed, prior-free methodology.
Sec. IV describes the setup and results of our real-world
experiments, while Sec. V presents our simulation studies,
showcasing the scalability and generalizability of Tac-Man.
In Sec. VI, we present a detailed discussion on the strengths,
limitations, and potential applications of Tac-Man, as well as
considerations for future research. Finally, Sec. VII concludes
the paper, summarizing our key findings and contributions
to this field.

II. Related Work
A. Manipulation with Explicit Priors
Traditional robotic manipulation strategies have predom-

inantly utilized manually predefined kinematic models, sup-
plied externally, for interaction with articulated objects [3–5].
While this approach has been effective in certain controlled
scenarios, it inherently limits the autonomy of the robotic
system due to its reliance on pre-established, accurate kine-
matic information.
Seeking to enhance system autonomy, recent develop-

ments in robotic manipulation have shifted focus toward au-
tonomously deriving object models via robot perception. This
trend is exemplified by strategies employing visual inputs to
predict kinematic models [9–11, 13–15, 20]. Nonetheless, this
reliance on visual perception introduces ambiguity, as objects
with similar appearances can harbor different internal artic-
ulations, challenging the accuracy of model predictions [13,
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39]. To address these issues, several studies have integrated
multi-frame analysis and wrist-mounted force/torque sensors
for more accurate kinematic model estimation [6–8, 12, 16–
19]. Despite these improvements, the dependency on being
able to identify specific joint types, such as revolute or
prismatic, limits the efficacy of such methods.

Our work introduces a novel prior-free approach to ad-
dress these limitations inherent in manipulation methods
with explicit priors. Tac-Man, validated by both real-world
experiments and simulations, demonstrates superior adapt-
ability and efficacy, especially in scenarios where traditional
methods, reliant on explicit priors, are found to be unreliable
or insufficient.

B. Manipulation with Implicit Priors

Robotic manipulation utilizing implicit priors typically
relies on extensive data to infer appropriate actions from
the observed state of an object. There are two prominent
approaches: imitation learning and reinforcement learning.

Imitation learning enables robots to acquire implicit pri-
ors through the observation of human demonstrations [21–
30], sometimes facilitated by tele-operational systems [42].
One major challenge in this approach is the collection of
diverse and rich data from humans [43]. Although transfer
methods [44–47] have improved the applicability to similar
objects, extending these priors to a wider range of objects
remains a substantial hurdle.

In contrast, reinforcement learning allows robots to de-
velop implicit priors through iterative interactions in simu-
lated settings [31–34]. The advent of extensive datasets of
articulated objects [35–38] has significantly propelled this
approach forward. However, the variance in these datasets
often falls short in terms of replicating the complexity
encountered in real-world situations, leading to incomplete
prior acquisition, in turn constraining the robots’ manipula-
tion capabilities.

While both approaches show promise in articulated object
manipulation, they grapple with the issue of incomplete
priors due to limited data coverage. Tac-Man, sidestepping
the need for laborious data collection and extensive training,
addresses these challenges and has demonstrated its efficacy
in manipulating a diverse array of articulated objects.

C. Robot-Object Contact Modeling

Current research tends to oversimplify and overlook the
contact between robots and objects. The assumption of a
fixed contact point is prevalent in numerous models [3, 4, 7,
12, 14, 16–19], yet this is often not feasible in practical appli-
cations. [5] have introduced the concept of a virtual joint [48]
to represent this contact, but in actual implementation, they
still rely on the assumption of a fixed joint. Works by [6, 8]
have relaxed this constraint to some extent, permitting only
specific types of movement between the robot and the object.
[49] estimates contact using tactile sensors. However, it is
limited to a specific type of handling based on rational motion
and overlooks the potential for slippage.

Our research, however, uncovers that the data obtained
from the contact site itself is adequate to support the
task of articulated object manipulation, enabling a prior-free
approach. By utilizing advanced tactile sensors to regulate
contact, Tac-Man successfully demonstrates the ability to ma-
nipulate articulated objects under a diverse array of scenar-
ios. This prior-free approach significantly enhances robots’
manipulation skills in comparison to existing methodologies.

D. Tactile Sensors

Compared to 6D force/torque sensors commonly mounted
at robots’ wrists, tactile sensors play a crucial role in di-
rectly measuring the state of robot-object contact [50, 51].
Commercially available solutions like the BioTac sensor [52]
are known for their high sensitivity, though they often lack
spatial resolution. Alternative technologies, such as force-
sensitive resistors, piezoresistive materials, and strain gauges,
offer flexibility in mounting and are useful for single-point
force sensing [53, 54]. However, they do not provide detailed
spatial information about contact. E-skins, recognized for
their adaptability and multi-modal sensing capabilities, de-
liver high resolution and are a promising development [55–
60]. Yet, they are prone to manufacturing complexities, dura-
bility issues, and higher costs.
GelSight-type sensors, on the other hand, present a com-

pelling alternative [61–69]. Characterized by pixel-level spa-
tial resolution and cost-effective production, these sensors
represent significant progress in tactile sensing technology.
In our research, we have developed two GelSight-inspired
tactile sensors, each uniquely mounted on the Robotiq 2F-85
gripper’s opposing sides. These sensors are custom-designed
with distributed markers [41], enabling efficient feature
correspondence between frames. This design improves the
gripper’s ability to perceive fine details of contact, facilitating
more nuanced manipulation of articulated objects.

III. The Tac-Man Method
This section outlines our problem formulation for prior-

free manipulation of articulated objects. At the core of Tac-
Man is the ability to regulate stable contact throughout the
manipulation process. This involves guiding the object from
its initial to its final state using just tactile signals. We
begin by introducing essential notations and preliminaries
in Sec. III-A, as these provide the foundational basis for our
problem formulation and the subsequent derivations detailed
in Sec. III-B. We then describe the contact representation
in Sec. III-C. This representation is crucial in determining
whether a contact is stable and this is discussed in Sec. III-D.
Finally, Sec. III-E presents a computational method for cal-
culating the robot’s pose adjustments. These adjustments are
essential for maintaining stable contact, thereby enabling the
successful manipulation of articulated objects.

A. Notation and Preliminaries

Before delving into the detailed formulation of Tac-Man,
we start by defining the following notations:
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Fig. 2: Schematic of Tac-Man. Tac-Man starts from an initial
pose and an estimated preliminary direction. Thereafter, the pose is
dynamically adjusted so as to maintain stable contact throughout
the manipulation process. This continuous adjustment is crucial to
ensure the correct interaction direction is also maintained. This
culminates in the successful manipulation of the articulated object.

‚ Bold small letters represent vectors (e.g., v), while capital
letters denote matrices (e.g., 𝑀). The subscript r𝑖s, where
𝑖 “ 1, . . . , 𝑛, on a bold small letter, refers to the 𝑖-th element
of the vector. 𝐼𝑛ˆ𝑛 is used to represent the identity matrix
of dimension 𝑛.

‚ The symbol ˆ̈ indicates the axis of a frame. The generalized
pose of a frame t𝑖u relative to another frame t 𝑗u is
described by a position vector p𝑗

𝑖
PR3 and a rotation matrix

𝑅
𝑗

𝑖
P 𝑆𝑂p3q. For simplicity, when frame t 𝑗u is equivalent

to the world frame t𝑤u, the superscript is omitted. The
homogeneous transformation matrix 𝑇

𝑗

𝑖
, integrating the

position vector and rotation matrix, is given by:

𝑇
𝑗

𝑖
“

„

𝑅
𝑗

𝑖
p𝑗

𝑖

0 0 0 1

ȷ

.

‚ K𝑖 𝑗 refers to a set of corresponding points from point
clouds 𝐶𝑖 and 𝐶 𝑗 , formulated as:

K𝑖 𝑗 “ tpu, vq | u P𝐶𝑖 , v P𝐶 𝑗u.

The notation #¨ is used to denote the number of elements
in a set.

B. Problem Formulation
In this subsection, we formulate the process of tactile-

informed prior-free manipulation of articulated objects. Con-
sider an articulated object with a movable part, which is
assumed to be graspable through a rigidly attached “handle.”
We postulate that the object’s articulation restricts the part
and the handle to a 1-Degree-of-freedom (DoF) trajectory. Let
us denote the handle’s trajectory as J , beginning at point J𝑠

and concluding at J𝑒 . Initially, in the absence of priors, only
J𝑠 is known. A robotic gripper, positioned in a global pose
𝑇1 is grasping the handle. The objective is to navigate the

gripper through a series of poses, 𝑇1,𝑇2,𝑇3, . . ., to maneuver
the handle towards J𝑒 . At any given pose 𝑇𝑖 , the contact
state 𝐶𝑖 between the object handle and the robotic gripper
can be ascertained via a mapping function 𝑓𝑐 :

𝐶𝑖 “ 𝑓𝑐pJ ,𝑇𝑖q. (1)

In practical terms, 𝐶𝑖 is directly measurable through tactile
sensors. Importantly, the state prior to establishing any
contact is denoted as 𝐶0.
Stable contact: To ensure successful manipulation, it

is crucial that the contacts 𝐶1:𝑛 meet certain constraints,
guaranteeing that the gripper can consistently grasp the
handle throughout the process. In this paper, we characterize
a state that meets these constraints as maintaining stable
contact.

Stable contact has two features. First, it must ensure that
the gripper maintains an intact grip on the handle throughout
the manipulation process and prevents slippage. This con-
cept is quantified by referencing the initial contact state 𝐶0
and assessing subsequent contact states 𝐶𝑖 . We employ the
function 𝑓𝑑p𝐶𝑖 ,𝐶0q to calculate the deformation of 𝐶𝑖 ; this
deformation must stay within the elastic deformation limits 𝐷
of the gripper material. Additionally, the shear deformation,
as determined by the function 𝑓𝑠p𝐶𝑖 ,𝐶0q, should not surpass 𝑆 ,
a threshold dictated by the friction ratio between the handle
and gripper material. The mathematical expression, therefore,
is formulated as:

„

𝑓𝑑p𝐶𝑖 ,𝐶0q
𝑓𝑠p𝐶𝑖 ,𝐶0q

ȷ

ď

„

𝐷

𝑆

ȷ

. (2)

Furthermore, a stable contact necessitates the gripper’s
engagement with the object’s handle to ensure synchronized
movement with the robot’s actions. To establish a reference
for stable contact 𝐶1, an initial predefined pose 𝑇1 is set.
This practice is common in the manipulation of articulated
objects [8]. A contact 𝐶𝑖 is considered stable also requires its
deviation from 𝐶1 stays within a specified threshold 𝐸:

𝑓𝑒p𝐶𝑖 ,𝐶1q ď𝐸, (3)

where 𝑓𝑒p𝐶𝑖 ,𝐶1q computes the difference between 𝐶𝑖 and 𝐶1.
Robot manipulation: Upon establishing stable contact,

the manipulation process commences with a preliminary
direction relative to frame t1u for operating the articulated
object. This direction, represented as D, is encapsulated
by a rotation matrix 𝑅1 in 𝑆𝑂p3q, detailed in Sec. VI-B.
The homogeneous transformation matrix 𝑇D , resulting from
moving along D by a distance 𝑦, is defined as:

𝑇D “

„

𝐼3ˆ3 𝑅1t
0 0 0 1

ȷ

, (4)

where t, the translation vector, corresponds to the manipu-
lation length along the negative y-axis as:

t“

»

–

0
´𝑦

0

fi

fl . (5)

The robot follows the preliminary direction, executing a
series of gripper frame poses 𝑇1:𝑛 to guide the handle’s
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transition from J𝑠 to J𝑒 while ensuring continuous stable
contact. For each incremental step 𝑖 “ 1, . . . , 𝑛´1, the next
pose 𝑇𝑖`1 is computed as follows:

𝑇𝑖`1 “𝑇𝑖𝑇
𝑖
𝑖`1 “𝑇𝑖 𝑇D

execution

argmin
𝑇𝑅𝑖 PR4ˆ4

}𝑓𝑐p𝑇𝑖𝑇𝑅𝑖 ,J q´𝐶1}2

recovery

. (6)

Execution: The execution term in Eq. (6) involves pro-
ceeding to move along the preliminary direction as described
in Eq. (4). This navigation progresses under the assumption
of no prior knowledge about the object handle’s trajectory,
posing a risk of exceeding the tolerance limits necessary for
maintaining stable contact. To balance this risk and maintain
efficiency, it is crucial to carefully select the magnitude of 𝑦
in Eq. (4). The objective is to maximize 𝑦 while ensuring that
the constraints for stable contact are met. This optimization
can be mathematically represented as:

maximize
𝑦

𝑦

subject to 𝑓𝑑p𝑓𝑐p𝑇𝑖𝑇D,J q,𝐶0q ď𝐷,

𝑓𝑠p𝑓𝑐p𝑇𝑖𝑇D,J q,𝐶0q ď 𝑆,

𝑓𝑒p𝑓𝑐p𝑇𝑖𝑇D,J q,𝐶1q ď𝐸.

(7)

Recovery: The recovery term in Eq. (6) implies that at
each step, the robot adjusts its pose to minimize any deviation
from the stable contact state 𝐶1, which may arise due to the
execution step.

C. Contact Representation

For the effective computation of Eq. (6) and optimization
of Eq. (7), a suitable representation of 𝐶𝑖 is crucial. To ensure
compatibility with the homogeneous transformation matrix
and to match the capabilities of current tactile sensors, we
represent the contact 𝐶𝑖 as a set of positions of all discretized
points at the contact site, relative to the reference frame t𝑖u.
The position of each contact point within 𝐶𝑖 is denoted by p𝑖 .
To facilitate alignment with the homogeneous transformation
matrix, the column vector representation of p𝑖 is defined in
an augmented format as follows:

p𝑖 “

»

—

—

–

𝑝𝑖𝑥
𝑝𝑖𝑦
𝑝𝑖𝑧
1

fi

ffi

ffi

fl

, (8)

where 𝑝𝑖𝑥 , 𝑝𝑖𝑦 , and 𝑝𝑖𝑧 represent the coordinates relative to the
gripper frame t𝑖u.

Significantly, 𝐶0 includes all points on the gripper’s outer
surface. Assuming the total number of points is 𝑚, 𝐶0 is
represented as:

𝐶0 “ tp0𝑖 | 𝑖 “ 1, . . . ,𝑚u. (9)

For simplicity, we assume a flat gripper surface, a common
assumption in current robotic grippers and easily achievable
with tactile sensor fabrication. Consequently, 𝑝0𝑥 is consistent
across all points and set to 0, attainable through coordinate

transformation. The position of a contact point at 𝐶𝑖 is then
characterized by the condition:

|p𝑖
r1s

| ě 𝜖 (10)

where 𝜖 is a small positive number, indicating that deforma-
tion in the 𝑥 direction must exceed 𝜖 for it to be considered
contact.
Therefore, 𝐶𝑖 for 𝑖 “ 1 . . . 𝑛 can be defined as:

𝐶𝑖 “ tp𝑖 | |p𝑖
r1s

| ě 𝜖u. (11)

D. Stable Contact

With the established representation of contact, we now
turn to the computational process for determining stable
contact.
The computation of stable contact involves addressing

the gripper’s maximum elastic deformation, encompassing
both normal and shear components. These are captured in
the expressions for 𝑓𝑑p𝐶𝑖 ,𝐶0q and 𝐷 within the context of
stable contact. Ensuring that the contact deformation remains
within the material’s elastic limits is crucial for maintaining
a stable grip on the object:

𝑓𝑑 p𝐶𝑖 ,𝐶0q “

»

–

maxt|ur1s| | u P𝐶𝑖u

maxt}

„

ur2s ´vr2s

ur3s ´vr3s

ȷ

}2 | pu, vq PK0𝑖u

fi

fl (12)

and
𝐷 “

„

𝑑𝑛
𝑑𝑠

ȷ

, (13)

where 𝑑𝑛 and 𝑑𝑠 denote the maximum normal and shear
elastic deformation, respectively. For notation simplicity, we
denote |ur1s| as Δ𝑁 and }

„

ur2s ´vr2s

ur3s ´vr3s

ȷ

}2 as Δ𝑆 henceforth.

Similarly, we formulate 𝑓𝑠p𝐶𝑖 ,𝐶0q and 𝑆 to address concerns
related to slipping in Eq. (2). Practically, to prevent sliding,
the friction 𝑓 between the object and the gripper should
not surpass the maximum static friction 𝑓𝑀 . In our model,
the friction at 𝐶𝑖 is positively correlated with the shear
deformation observed from 𝐶0:

𝑓 „Δ𝑆. (14)

Thus, the shear deformation must adhere to the following
constraints:

@pu, vq PK0𝑖 ,Δ𝑆 ď𝛿𝑀p𝑓𝑁 q, (15)

where 𝛿𝑀 represents the deformation associated with the
maximum static friction 𝑓𝑀 , proportional to the normal force
𝑓𝑁 . Assuming linear elasticity in the normal direction, 𝛿𝑀
can be modeled as:

𝛿𝑀pΔ𝑆q “𝛿0Δ𝑆, pu, vq PK0𝑖 , (16)

with 𝛿0 being a constant determined experimentally:

𝛿0 “
𝛿𝑀pΔ𝑆0q

Δ𝑆0
, pu, vq PK0𝑖 . (17)

The no-sliding constraint is thus defined as:

@pu, vq PK0𝑖 ,
Δ𝑆

Δ𝑁
ď𝛿0, (18)
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leading to the expression for 𝑓𝑠p𝐶𝑖 ,𝐶0q:

𝑓𝑠p𝐶𝑖 ,𝐶0q “maxt
Δ𝑆

Δ𝑁
| pu, vq PK0𝑖u, (19)

and setting
𝑆 “𝛿0 . (20)

Additionally, in the context of Eq. (3), we intuitively
compute it as the difference between the corresponding
points of two contacts, considering our established contact
representation. To quantify this difference, we apply the loss
function outlined in Besl et al. [70]. However, to ensure
fairness in cases where a contact has a larger number of
contact points, we normalize this loss by the number of
corresponding pairs in K1𝑖 :

𝑓𝑒p𝐶𝑖 ,𝐶1q “

ř

pu,vqPK1𝑖
}u´v}2

#K1𝑖
. (21)

E. Robot Pose Update
Having established the contact representation and com-

putation methods for stable contact constraints, we should
address the optimization in Eq. (7) to compute the value
of 𝑦 for the determination of 𝑇D . However, in the absence
of knowledge about the handle’s trajectory J , determin-
ing 𝑦 explicitly remains challenging. We, therefore, adopt
an exploration mechanism by continuously executing with
small increments in 𝑦 until any term in the constraints of
optimization Eq. (7) reaches its upper bound, scaled by a
safety margin 𝛼 (0ă𝛼 ă 1). This process is concluded as

𝑇 1
𝑖 “𝑇𝑖𝑇D, (22)

which is referred to as the execution stage.
To recover the contact to within the specified bounds

after the execution stage, we employ an optimization algo-
rithm [70] to compute the optimal transformation 𝑇𝑅𝑖 for the
recovery term in Eq. (6):

𝑇𝑅𝑖 “ argmin
𝑇𝑅𝑖 PR4ˆ4

ÿ

pu,vqPK1𝑖

}𝑇 𝑖
𝑖`1u´v}2. (23)

The updated robot pose is then given by:

𝑇𝑖`1 “𝑇 1
𝑖𝑇𝑅𝑖 . (24)

This phase is referred to as the recovery stage. The update of
the robot pose follows an iteration between the two stages.

IV. Real-world Experiments
To assess the effectiveness of Tac-Man, our proposed

approach to prior-free manipulation of articulated objects,
we conducted a series of real-world experiments. These were
designed with meticulous attention to detail, as outlined in
Sec. IV-A. They aim to thoroughly evaluate key constraints
and determine essential hyper-parameters for the task, as
discussed in Sec. III. Our experiments showcase the strengths
of Tac-Man, particularly its robustness and adaptability under
various conditions. These include scenarios where priors
for object articulation are ambiguous (Sec. IV-B), imperfect
(Sec. IV-C), unknown (Sec. IV-D), or obsolescent (Sec. IV-E),
as previously discussed in Sec. I.
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Fig. 3: Real-world experiment setup. The experiments are con-
ducted in a real-world environment using a Gen3 7DoF robotic arm
paired with a Robotiq 2F-85 gripper. Integral to the setup are two
GelSight-inspired tactile sensors, each equipped with a 7ˆ7 grid of
labeled markers to enhance tactile sensing capabilities.

A. Experimental Setup

Robot system setup: Tac-Man is designed for broad
compatibility with robotic systems capable of facilitating
6D movement in the gripper. In experiments, we utilized
a Kinova Gen3 7DoF robotic arm equipped with a Robotiq
2F-85 gripper (Fig. 3). To assess the contact constraints as
outlined in Sec. III, we integrated two GelSight-inspired
tactile sensors into the gripper.
GelSight-inspired tactile sensor: Further enhancing

our ability to validate these constraints, we based our sen-
sors on the standard GelSight design, which provides high-
resolution, pixel-level data at the contact surface. Each sensor
was specially fabricated with a unique 7ˆ7 grid of labeled
markers (Fig. 4). This grid aids in accurately identifying point
correspondences between two contacts. Although this modi-
fication slightly reduces the resolution and depth reconstruc-
tion accuracy as compared to conventional GelSight sensors,
its effectiveness in practical scenarios and in validating the
contact constraints detailed in Sec. III is notable.
System hyper-parameters: The determination of val-

ues for the defined parameters is crucial. The following
outlines the chosen values, with a summary provided in
Tab. I:
‚ The threshold for identifying contact points, 𝜖 in Eq. (10), is
set to be adaptable. This is due to the material’s flexibility,
as shown in Fig. 5, which results in deformation not only
in the contact region but also in the surrounding area upon
contact with the object. This deformation relates to Δ𝑁 and
the handle’s shape, among other factors. For adaptability,
𝜖 is defined as the minimal Δ𝑁 that ensures at least
8 contact points, exceeding the necessary 6 for accurate
6D transformation solving in Eq. (23) and surpassing the
number of markers in a line (7 in our sensors), thus
ensuring a 3D spread of contact points.

‚ The normal elastic deformation limit, 𝑑𝑛 in Eq. (13), is set

https://pku.ai/
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Fig. 4: Visualization of tactile sensor reading. The GelSight-
inspired sensors are adept at providing detailed contact information
during object interactions. These sensors excel in capturing Δ𝑁 in
high spatial resolution, essential for precise detection of contact
points. To further enhance their effectiveness, labeled markers are
used for accurate point correspondence. Utilizing these features, Δ𝑆
is calculated and visualized using white arrows in the illustration.
For better visibility, the magnitude of these arrows is exaggerated
by a factor of 5, ensuring a clearer visualization of the contact
dynamics.
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Fig. 5: Selection concerns for the 𝜖 value. The flexibility inherent
in the tactile sensor material results in the activation of both
the direct contact region and the adjacent transitional areas when
contacting the handle. This characteristic underlines the need for
a carefully adaptable 𝜖 value. Such adaptability ensures the precise
identification of true contact points, thereby reducing the likelihood
of detecting unreliable points.

at 2 mm. This value is chosen based on observations that
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Fig. 6: 𝛿0 value acquisition. The experiment to obtain hyper-
parameter 𝛿0, as defined in Eq. (17): (a) The experiment begins with
the arm pulling backward after the gripper has firmly grasped a
slippery Lego piece. (b) Multiple trials are conducted at different
values of Δ𝑁 . Three representative trials are visualized to illustrate
the process. The results follow the friction model well and 𝛿𝑀 can
be easily identified. The results align well with the friction model,
allowing for the straightforward identification of 𝛿𝑀 . (c) The 𝛿0
obtained from these multiple trials is visualized, and a value of 1.5
is selected for safety considerations.

within this range, the system can revert to its initial state
after releasing contact. It is important to note that this
value represents a conservatively reduced normal elastic
deformation for enforcing stricter constraints.

‚ The parameter 𝛿0 in Eq. (17) is linked to handle material
properties. To set a lower bound, an experiment with a
slippery Lego piece, depicted in Fig. 6(a), identifies the 𝛿𝑀
values at different Δ𝑁 . This is done by tracking the peak
shear displacement for each marker, as shown in Fig. 6(b).
The results from multiple trials, illustrated in Fig. 6(c), lead
to setting 𝛿0 at 1.5 for safety.

‚ The shear elastic deformation limit, 𝑑𝑠 in Eq. (13), is
calculated as 𝑑𝑛𝛿0. Though smaller than the actual one,
this value is deemed acceptable for stricter constraint
enforcement.

‚ The upper bound for another stable contact constraint, 𝐸 in
Eq. (3), is experimentally determined to be 0.4 mm, ensur-
ing it does not exceed 𝑑𝑛 , 𝑑𝑠 , and 𝛿0 during manipulation.

‚ The movement magnitude in the execution stage, 𝑦 in
Eq. (7), is set as 𝜖𝛿0 to preserve stable contact during
execution.

TABLE I: Values of system hyper-parameters

hyper-parameter 𝜖 𝑑𝑛 𝑑𝑠 𝛿0 𝐸 y 𝛼

value adaptive 2 mm 3 mm 1.5 0.4 mm 𝜖𝛿0 0.6

The experiments described below are conducted in accor-
dance with the setup and hyper-parameters detailed above.
This ensures consistency and relevance in evaluating the
efficacy of Tac-Man in real-world scenarios.

https://pku.ai/
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Fig. 7: Manipulation under ambiguous priors. Tac-Man showcases its proficiency in addressing the challenge caused by ambiguous
priors, characterized by objects that, while visually indistinguishable, feature distinct articulation mechanisms. Our evaluation involves
four articulated objects that look identical but differ in articulation: (a) a cabinet with a revolute joint on the left; (b) another cabinet with
a revolute joint on the right; (c) a cabinet with a revolute joint at the bottom; and (d) a drawer with a prismatic joint. In scenarios (e)–(h),
corresponding to objects (a)–(d), Tac-Man starts from the same position and in the same direction. The initial backward pull by the arm
reveals variations in contact loss due to the differing articulations. Upon reaching a certain deviation threshold, the system triggers an
adjustment in the arm’s pose. This adjustment, optimized by Eq. (23), aims to recover stable contact and re-align to the correct interaction
direction. The arm then continues its backward pull. Through this iterative process of adjustment and execution, each object, starting
from the same initial state, is maneuvered to a distinct final state reflective of its unique articulation. For video demonstrations, refer to
Supplementary Video S1.

https://vimeo.com/907224197/f38b1dea62
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Fig. 8: Manipulation under imperfect priors. Tac-Man adeptly addresses challenges posed by imperfect priors, which accurately identify
the model type but contain erroneous parameters. (a) An example is an off-axis door, designed for space and energy efficiency, diverging
from traditional models by not placing the hinge directly on one side. This variation can mislead prior assumptions regarding the arc
trajectory’s radius. (b) We mirror this scenario by assigning the robot a pre-programmed arc trajectory to open a microwave oven with
a revolute joint, incorporating a 10 % radius error. This slight misalignment between the priors and actual parameters leads to a gradual
loss, eventually causing the gripper to lose contact with the handle, resulting in a failed manipulation attempt. (c) In contrast, Tac-Man
dynamically re-calibrates the arm’s pose to correct any unexpected errors, ensuring alignment with the correct interaction direction, going
on to successfully open the microwave oven. This demonstration of adaptability underscores Tac-Man’s ability to complete tasks even
with imperfect priors. For video demonstrations, refer to Supplementary Video S2.

B. Manipulation under Ambiguous Priors

Ambiguous visual priors pose a significant challenge in
robotic manipulation, especially when objects with visually
indistinguishable appearances harbor varying articulation
mechanisms. This dilemma is discussed in Sec. II-A and
exemplified by Zhu et al. [39]. To illustrate, Fig. 7(a)–(d)
features four objects that, despite their identical appearances,
are equipped with different articulations: a cabinet with a
revolute joint on the left (a), another with the joint on the
right (b), a third with a joint at the bottom (c), and a drawer
with a prismatic joint (d). This diversity underscores the
complexity of inferring object kinematics solely from visual
information.

Tac-Man effectively demonstrates proficient manipulation
of distinct objects in all four cases, as shown in Fig. 7(e)–
(h), each corresponding to the configurations in Fig. 7(a)–
(d). Starting from the same initial state with stable contact
C1, Tac-Man employs an iterative two-stage cycle, beginning
with an identical preliminary direction 𝑅1. During the exe-
cution stage, tactile feedback is utilized to discern deviations
from the correct interaction direction by observing changes
in the contact points. For example, the contact in (e) exhibits
a shear counterclockwise deviation, indicating a need for an
additional clockwise rotation in the robot’s movement, and

conversely for the shear clockwise deviation observed in (f).
In the scenario depicted in (g), a deviation in the normal
direction Δ𝑁 signals the requirement for an added rotation
for recovery. Conversely, in (h), the contact remains stable as
the arm’s movement is congruent with the correct direction.
When a predetermined deviation threshold is reached, the
system enters the recovery stage, employing the optimization
outlined in Eq. (23) to compute the optimal arm pose that
compensates for the observed deviation, thereby realigning
the gripper to the correct interaction direction. Following
this adjustment, the process resumes along the preliminary
direction 𝑅1. Through continual refinement to preserve stable
contact, the arm successfully manipulates the objects into
their intended states, as depicted in the last images in Fig. 7.

C. Manipulation under Imperfect Priors

Imperfect priors present a significant challenge in robotic
manipulation, even when the articulation structure is known.
Errors in model parameters can make these priors unreliable,
as demonstrated by the example of an off-axis door, depicted
in Fig. 8(a). Unlike conventional doors with hinges located
along one edge, the off-axis door features a hinge positioned
away from the edge, complicating the acquisition of accurate
priors.

https://vimeo.com/907224440/b059314753
https://pku.ai/
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Fig. 9: Manipulation under unknown priors. Tac-Man showcases exceptional proficiency in managing scenarios characterized by
unknown priors, particularly when object kinematics defy prior-based prediction or exceed the limits of current robotic perception. We
illustrate this capability with two distinct examples. In scenario (a), the object’s articulation mechanism, which is concealed beneath
a cover, involves motions that combine translation and rotation—a complexity not easily captured by standard prismatic or revolute
joint models. Scenario (b) presents a handle executing a helical trajectory, with the precise determination of its pitch posing a substantial
challenge. Through these examples, Tac-Man proves its adeptness at navigating the intricacies of complex kinematic patterns, underscoring
its effectiveness in scenarios where traditional perception models may falter. For video demonstrations, refer to Supplementary Video S3.

The impact of imperfect priors is illustrated through a
challenging manipulation task, in which the robot is pro-
grammed to follow an arc trajectory to open a microwave
oven with a revolute joint, as shown in Fig. 8(b). However,
a 10 % error in the trajectory’s radius introduces a small
but critical imperfection in the priors. This error, without
any real-time corrective adjustments, accumulates a loss that
eventually leads to the gripper losing contact with the handle,
resulting in task failure.

In contrast, Fig. 8(c) demonstrates Tac-Man’s approach,
employing adaptive adjustments during the manipulation
to effectively counteract the inaccuracies in the priors. By
dynamically compensating for the unforeseen deviation, Tac-
Man ensures alignment with the correct interaction direction.
This adaptability allows Tac-Man to successfully complete the
task, fully opening the microwave oven door, showcasing its
efficacy in overcoming the limitations imposed by imperfect
priors.

D. Manipulation under Unknown Priors

Encountering objects whose articulation mechanisms defy
accurate perception introduces a scenario where priors on
kinematics remain unknown. Such conditions, characterized
by complex movements that cannot be succinctly represented
by conventional kinematic models like prismatic or revolute
joints, present a significant challenge. Existing research has
scarcely addressed the manipulation of objects requiring
combined translational and rotational motions due to the
difficulty in modeling these actions explicitly. For example,
Fig. 9(a) illustrates an object designed compactly, necessi-
tating that its handle executes both linear and rotational
movement simultaneously. Another example is shown in
Fig. 9(b), where a vise handle follows a spiral path. The
ability to accurately identify and model such complex motion
patterns remains beyond the reach of current perception
methods.
Tac-Man circumvents this challenge, as demonstrated with

two examples of objects whose handles exhibit complex
movements combining translational and rotational motions.
Through iterative processing, the Tac-Man adjusts the robot

https://vimeo.com/907224671/cb9aa51fcb
https://pku.ai/
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Fig. 10: Manipulation under obsolescent priors. Tac-Man demonstrates exceptional performance in scenarios characterized by
obsolescent priors, often resulting from unpredictable perturbations that modify object kinematics. Such perturbations are common in
dynamic, human-centric environments, frequently emerging from unanticipated human interactions. To assess Tac-Man’s resilience against
these perturbations, we introduced random forces to one side of the object in scenarios (a) and (b), effectively altering the cabinet’s rotation
axis in (a) and the drawer’s opening direction in (b). Despite the introduction of errors through these human-induced disturbances, Tac-Man
adeptly adjusts, preserving the correct interaction direction and ensuring successful manipulation outcomes. For video demonstrations,
refer to Supplementary Video S4.

to the correct interaction direction and successfully manipu-
lates the object in both examples.

E. Manipulation under Obsolescent Priors

Dynamic environments often introduce unpredictable per-
turbations, such as human interventions or environmental
turbulence, rendering initially accurate priors for object kine-
matics obsolescent. To evaluate Tac-Man’s performance in
this context, we conducted experiments depicted in Fig. 10 in
which the position of the articulated object was deliberately
altered during manipulation. This was achieved by applying
force to one side of the object, leading to a shift in either the
rotation axis of a cabinet (Fig. 10(a)) or the opening direction
of a drawer (Fig. 10(b)), as indicated by the hand icons.

Despite encountering such unpredictable disturbances,
Tac-Man demonstrates remarkable adaptability. It swiftly
compensates for the changes by correctly adjusting the
robot’s interaction strategy, thus enabling successful ma-
nipulation. This resilience underscores Tac-Man’s ability to
effectively handle real-time perturbations, ensuring consis-
tent manipulation performance even when initial kinematic

priors are no longer valid due to unforeseen environmental
interactions.

V. Large-scale Verification in Simulation

Given the logistical challenges of physically experimenting
with a comprehensive variety of objects, we look to simula-
tion studies to further validate the generalization capability of
Tac-Man. Utilizing NVIDIA Isaac Sim, our simulations cover
a wide range of objects, mirroring the setup of our real-
world experiments as outlined in Sec. V-A. For a thorough
assessment, we incorporate objects with prismatic and revo-
lute joints from the PartNet-Mobility dataset [36], reflecting
the common articulations found in existing datasets.
Acknowledging the limitation of current datasets of objects

with simpler joint types, we further extend our verification to
include articulated objects designed with complex manipula-
tion trajectories. These objects are uniquely characterized by
trajectories that follow randomly sampled curves, introducing
additional challenges to the manipulation task. In Sec. V-B,
we elaborate on the preparation of these objects and present
both qualitative and quantitative findings from our simula-
tions. The results compellingly illustrate Tac-Man’s adeptness

https://vimeo.com/907224990/3b4181a4e0
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at navigating objects with a broad range of articulations, un-
derscoring its effective adaptability and generalization across
diverse scenarios.

A. Environmental Setup

Our simulation environment, depicted in Fig. 11, features
a robot arm equipped with a gripper poised to engage an
object’s handle. Initially, the robot is programmed to follow
a preliminary direction 𝑅1, applying Tac-Man to articulate
the object. A critical aspect of Tac-Man is its reliance on the
compliance of silica gel material to accurately track contact
between the gripper and the handle. To mimic this in a rigid
body simulation environment, we employ specialized designs
for contact measurement, detailed in Appx. B.

The simulation divides test objects into two categories:
standard objects with prismatic or revolute joints from ex-
isting datasets, and randomly created custom objects with
complex trajectories. From the PartNet-Mobility dataset [36],
we select objects with detailed articulation annotations pro-
vided by GAPartNet [38], as outlined in Appx. C. For the
evaluation, 25 objects with prismatic joints and another 25
with revolute joints were pre-processed. A manipulation is
deemed successful if a revolute joint rotates beyond 60.0˝or
a prismatic joint extends over 250.0 mm. Fig. 11(a) showcases
a subset of these objects and their initial grasps.

To assess Tac-Man’s adaptability beyond basic joint types,
we also evaluate it on articulated objects designed with
randomly generated trajectories. These are constructed by
sampling Bézier curve segments of various orders (2, 3, 4,
and 5) on a 2D plane, ensuring no self-intersections. Each
curve inspires a 3D playboard that defines a manipulation
path, with a toy train at the start point acting as the handle.
Physical collisions are configured to restrict the handle’s
movement along the trajectory, with the construction process
detailed in Appx. D. Fig. 11(b) illustrates an example of a
3-order Bézier curve, its corresponding play-board, and the
simulation’s initial state. Additional examples of generated
play-boards are presented in Fig. 11(c), highlighting the in-
creased complexity and manipulation challenge with higher-
order curves. For the evaluation, 25 curves of orders 3 to 6
are sampled, each tested once. Success is achieved when the
toy train is moved from one end of the curve to the other
by the gripper.

B. Results

Our simulation results substantiate the efficacy of the setup
in evaluating Tac-Man. In Fig. 12, we highlight five represen-
tative examples: (a–c) illustrate the manipulation of objects
with standard prismatic and revolute joints, while (d–e) detail
scenarios involving intricate trajectory manipulations. The
direction of pull and subsequent adjustments are indicated
by the orange arrows. The simulated tactile feedback is
visualized in the grey area beneath each figure, in which
inactive, reference and current contact points are depicted
as grey dots, blue circles, and red dots, respectively. Orange
arrows, enlarged five-fold for clarity, depict the displacement

from reference to current markers, with their size increasing
in proportion to the error magnitude.
Consistent with our real-world experiments, deviations in

the manipulation direction lead to deviation (Fig. 12(a-c)) in
the tactile pattern, signaling the need for corrective move-
ments beyond the preliminary direction. Once the contact
deviation surpasses 𝛼𝜖 (Fig. 12(b–e)), Tac-Man adeptly adjusts
to re-establish stable contact.
Quantitative evaluations for objects with prismatic and

revolute joints are presented in Tab. II (columns 2-3), show-
casing a 100 % success rate across all 50 objects (25 per
joint type). Additionally, results for objects following intricate
manipulation trajectories are tabulated in Tab. II (columns 4-
7), with PB-𝑛 denoting performance on trajectories of order
𝑛. Remarkably, Tac-Man attains a 100 % success rate in all
200 trials (25 curves × 4 orders × 2 endpoints), underlining
its proficiency and reliability in handling a broad spectrum
of articulation patterns on a large scale without reliance on
specific priors.

TABLE II: Simulation quantitative results

Category Pri. and Rev. Intricate Trajectories

Pri. Rev. PB-2 PB-3 PB-4 PB-5
Succ. (%) 100 100 100 100 100 100

VI. Discussion
A. Advancing Robotic Manipulation with Tac-Man
Our study has validated the efficacy of Tac-Man, a tactile-

informed, prior-free approach for manipulating articulated
objects. By leveraging tactile feedback, Tac-Man discerns
discrepancies between the preliminary direction and actual
interaction directions, allowing dynamic adjustments to en-
sure precise manipulations. A standout feature of Tac-Man
is its operational independence from pre-existing knowledge
about object kinematics, presenting a considerable advantage
over traditional methods reliant on priors. This capability
is particularly beneficial in environments where priors may
be ambiguous (Sec. IV-B), imperfect (Sec. IV-C), unknown
(Sec. IV-D), or obsolescent (Sec. IV-E)—conditions prevalent
in dynamic, human-centric settings.
Tac-Man enhances robotic autonomy by obviating the need

for manually inputting accurate object kinematic models, a
common requirement in earlier strategies [3–5]. It sidesteps
the limitations of methods that depend on visual perception
for determining object kinematics [9–11, 13–15, 20], which
are vulnerable to the ambiguities and inaccuracies intrinsic
to visual data [39]. Unlike approaches that utilize multi-frame
observations to clarify ambiguities [6–8, 12, 16–19], Tac-Man
does not presuppose the existence of specific articulation
types, thus demonstrating its versatility in managing novel
articulation mechanisms as evidenced in Sec. IV-D.
Moreover, Tac-Man circumvents the exhaustive data col-

lection process typically required by learning-based methods
to tackle articulated object manipulation challenges [21–38].
The diversity and complexity of articulated objects, ranging
from basic prismatic and revolute joints to more intricate

https://pku.ai/
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Fig. 11: Simulation setup. (a) The setup includes objects with prismatic and revolute joints from the PartNet-Mobility dataset [35], shown
in their initial simulation states. (b) We further introduce a playboard featuring an intricate manipulation trajectory based on a randomly
sampled Bézier curve; control points of the curve are marked with red “x”s. At the starting point of this curve, a toy train is placed to
act as the manipulation handle (right), with a detailed collision setup (below). (c) Further examples of generated playboards, where rows
1-4 correspond to playboards with 2nd, 3rd, 4th, and 5th-order Bézier curves as the trajectories, showcasing the range of complexity in
manipulation paths.

mechanisms featuring simultaneous translation and rotation,
pose a significant challenge for data-driven approaches. Yet,
Tac-Man adeptly addresses these challenges without relying
on extensive datasets, thereby facilitating autonomous explo-
ration and data collection for previously unseen objects. This
autonomous data-gathering capability enhances the data col-
lection process’s versatility and substantially reduces human
labor.

Additionally, Tac-Man showcases remarkable adaptability
to dynamic changes within environments, as explored in
Sec. IV-E. Its ability to adjust to unforeseen human inter-
ventions underscores a vital strength for robots operating
in human-centric environments, where static assumptions
about object kinematics can lead to manipulation failures.
This adaptability is essential for ensuring seamless human-
robot coexistence, enabling robots to effectively navigate the
inherent unpredictability of real-world settings.

B. Limitations and Future Work

Preliminary direction acquisition: The efficacy of
Tac-Man hinges on the availability of a preliminary direction
for manipulating an articulated object. This foundational
assumption is supported by advances in research, such as the
work by Mo et al. [71], which aims to identify critical interac-
tion points and predict preliminary directions for interaction,
like pulling or pushing, for engaging with articulated objects.
Although these directions might not always be accurate,
Tac-Man is specifically engineered to accommodate and
correct such preliminary direction, effectively handling any
associated uncertainties. To showcase Tac-Man’s resilience
in this context, we experiment with a drawer, providing
the robot arm with two intentionally erroneous directions.
Despite these deviations, as depicted in Fig. 13, Tac-Man
demonstrates its robust capability to adapt and successfully
complete the drawer opening task.

This exploration into the reliance on preliminary direction
underscores a limitation that also opens avenues for future
research. Enhancing the accuracy of these directions or
developing mechanisms within Tac-Man to autonomously
generate and refine interaction directions could further im-
prove its applicability and success rate across a wider array
of articulated objects and scenarios. Investigating these en-
hancements would be a valuable direction for future work,
potentially leading to even more adaptable and autonomous
robotic manipulation systems.
Time efficiency: While Tac-Man demonstrates notable

capabilities in the prior-free manipulation of articulated
objects, an area for potential enhancement is its time ef-
ficiency. As indicated in Tab. III, the completion time for
manipulation tasks using Tac-Man tends to exceed that of
human performance. This disparity is largely attributed to the
current implementation of Tac-Man, which operates without
the benefits of closed-loop control.
In its present form, Tac-Man employs a cautious, step-

by-step exploratory approach. This method, devoid of pre-
established object priors or learning, requires careful evalu-
ation of, and response to, tactile feedback. The task duration
figures reported in Tab. III primarily reflect this initial phase
of exploration, critical for the robot to accurately interpret
and interact with the object.
Following this initial phase, the robot accumulates insights

into the object’s kinematics, aiding in the development of
effective priors for future manipulations. These priors facil-
itate quicker subsequent manipulations, yet the absence of
closed-loop control could lead to inefficiencies, particularly
when initial conditions vary between attempts.
Looking ahead, enhancing Tac-Man to include closed-

loop control elements could significantly improve its time
efficiency. Such a development would enable quicker and
more responsive adaptations during initial exploration, po-
tentially reducing the overall time required for manipula-
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Fig. 12: Examples of simulated manipulation. Each row captures a sequence of manipulating an articulated object, showcasing
scenarios with basic joint types (a-c) and intricate trajectories (d-e). For each scenario, the depiction includes the initial and final states,
the execution-recovery iterations, and the tactile patterns observed. This visual representation underscores the effectiveness of our simulation
setup in demonstrating Tac-Man’s capability to adapt and succeed across varying articulation challenges. For video demonstrations, refer
to Supplementary Video S5.

https://vimeo.com/907225198/b641a5a84d
https://pku.ai/
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Fig. 13: Manipulation under misaligned preliminary direction. Even given a misaligned preliminary direction, Tac-Man is still able
to use it to successfully open the drawer.

TABLE III: Time for completing various manipulation tasks.

Case Fig. 7(e) Fig. 7(f) Fig. 7(g) Fig. 7(h) Fig. 8(b) Fig. 9(a) Fig. 9(b)
Time (s) « 480 « 600 « 480 « 180 « 750 « 280 « 900

tions. It would lead to a more balanced approach, achiev-
ing manipulation robustness and efficiency on a par with
human performance, especially in dynamic environments as
discussed in Sec. IV-E.

VII. Conclusion
This paper introduces a novel prior-free approach to

the manipulation of articulated objects, characterized by its
reliance on tactile feedback rather than predefined object
models. Central to this approach is the regulation of stable
contact throughout the manipulation process, enabling dy-
namic adjustments of the robot’s grip to ensure successful
interaction with various objects.

The efficacy of Tac-Man is demonstrated through a series
of experiments and simulations, highlighting its robustness
in diverse scenarios. This includes its ability to handle am-
biguous perceptions, adapt to imperfect parameter estimates,
and respond effectively to unforeseen perturbations. The
versatility of Tac-Man is further evidenced by its ability
to manage objects with intricate trajectories, showcasing its
practical utility in real-world applications.

In summary, this research makes a timely contribution to
the field of robotic manipulation. It introduces a flexible and

intuitive solution for interactions with articulated objects in
environments marked by complexity and uncertainty. The
adoption of a prior-free methodology marks a step forward
in developing robotic systems that are more adaptable and ca-
pable of performing sophisticated manipulation tasks, paving
the way for enhanced automation and efficiency in various
applications.
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Appendix
A. Material List

For detailed demonstrations related to this study, a compre-
hensive list of supplementary video URLs is provided. These
videos visualize experiments and simulations discussed in
this paper. Please refer to Tab. A1 for the complete set of
links to these supplementary materials.

TABLE A1: Complete URLs of supplementary materials.

Material Description and URL

Supp. Video S0 Manipulation trajectories in Fig. 1
https://vimeo.com/907222643/9793e630b0

Supp. Video S1 Manipulation under ambiguous priors
https://vimeo.com/907224197/f38b1dea62

Supp. Video S2 Manipulation under imperfect priors
https://vimeo.com/907224440/b059314753

Supp. Video S3 Manipulation under unknown priors
https://vimeo.com/907224671/cb9aa51fcb

Supp. Video S4 Manipulation under obsolescent priors
https://vimeo.com/907224990/3b4181a4e0

Supp. Video S5 Simulation studies
https://vimeo.com/907225198/b641a5a84d

B. Details in Simulation Setup

Tac-Man leverages the compliance of the silica gel material
on the gripper to track contact. Simulating such compliance
within a rigid body simulator presents unique challenges,
for which we have implemented a series of specialized
designs. These designs are crucial to accurately compute the
contact dynamics and effectively mimic the compliance of
the gripper’s material. The simulation setup aims to replicate
the tactile feedback mechanism as closely as possible to real-
world conditions. Key hyper-parameters play a significant
role in this process, and their values are determined based
on empirical observations and testing. The specific values
used in our simulations, which are instrumental in achieving
realistic contact dynamics, are enumerated in Tab. A2. This
table provides a detailed overview of the hyper-parameters,
ensuring transparency and reproducibility of the simulation
results.

Establishing contact: In the simulated environment, a
point cloud grid of resolution 𝑛res ˆ𝑛res is sampled on each
fingertip of the gripper, resulting in 𝐶psimq

0 “ tp0𝑖 |𝑖 “ 1, . . . ,𝑚u.
The notation (p¨qpsimq) indicates simulated quantities. To
mimic real-world sensor noise, Gaussian noise 𝜖 „Np0, 𝜁 2q is
added to the point cloud. Once the gripper grasps the handle,
we define the initial contact set 𝐶psimq

1 as:

𝐶
psimq

1 “ tp𝑖 |Dpp0𝑖 q ă 𝜖psimqu, (A1)

where Dppq denotes the distance from point p to the grip-
per’s surface.

Simulating contact: With 𝐶
psimq

1 established, this con-
tact set is then affixed to the handle’s frame. As the manipu-
lation progresses, 𝐶psimq

1 is transformed back to the gripper’s
frame 𝑇𝑖 to update the contact 𝐶psimq

𝑖
. The iterative process

between the execution and recovery stages in the simulation

adheres to the methodology detailed in Sec. III and utilizes
the same hyper-parameters as in the real-world experiments
(Tab. I).
Simulating gripper compliance: To realistically sim-

ulate gripper compliance within a rigid body simulation
framework, we introduce a mechanism that fixes the joint
on the object during the recovery stage. This approach is
designed to approximate the flexibility and adaptive nature
of an actual gripper’s material, ensuring that the simulated
interaction dynamics closely resemble those observed in real-
world scenarios.

C. Preprocess PartNet-Mobility

The PartNet-Mobility dataset [36] comprises 1,045 articu-
lated objects, and GAPartNet [38] enriches it with detailed
part-level annotations. In this dataset, each object includes
a base link and one or more moving links, connected via
prismatic or revolute joints. Objects with multiple joints often
necessitate sequential manipulations to fully access all their
links (for instance, opening an oven door before pulling out
the grill inside). For the sake of simplicity in our study,
we focus on objects with a single accessible handle. We
select objects that necessitate manipulating just one joint
by grasping the linked handle. From this refined subset, we
randomly chose 50 objects with revolute joints and another
50 with prismatic joints, adhering to these specified criteria.

D. Generate Random 1-DoF Playboards

Our simulation setup, as depicted in Fig. 12(b), incorporates
playboards consisting of a baseboard (colored white) and a
toy train (colored red). The train’s movement is restricted to
a predetermined trajectory (colored grey). To achieve this,
we constructed a groove on a flat cube board and set up a
distance joint between the board and the toy train, limiting its
movement to within the plane of the board. Two cylindrical
locating pins beneath the train’s collision model are inserted
into the groove, further guiding the train along the set
trajectory.
The trajectories are generated as Bézier curves with 𝑛ctrl

control points, 𝐵p𝑠q, 𝑠 P r0, 1s, resulting in p𝑛ctrl ´1q-order
curves. The control points are uniformly sampled and scaled
to fit within a 𝐻cmˆ𝑊 cm area. This scaling ensures that
the trajectories, confined within the convex hull of the
control points, remain within the defined area. Any self-
intersecting curves, taking into account a padding of 𝑤 , are
discarded. The groove, based on these curves, is carved into
a p𝐻 `2𝑤qcmˆp𝑊 `2𝑤qcm board. The initial position of
the toy train is set at 𝐵p𝜂q, where 𝜂 is a small positive
value to prevent initial pin-border collisions. Fig. 11(b) il-
lustrates an example curve and corresponding play-board,
with control points marked as red ‘x’s. Additional examples
in Fig. 11(c) demonstrate that higher-order curves generally
exhibit greater complexity, posing increased manipulation
challenges. The hyper-parameters for this setup are listed
in Tab. A2.
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TABLE A2: Hyper-parameters defined in Appxs. B and C.

Hyper-parameter 𝑛res 𝜖psimq 𝜁𝑛 𝑛ctrl 𝐻 𝑊 𝑤 𝑟pin 𝜂

Value 10 0.00025 m 2 mm 3, 4, 5, 6 40 cm 60 cm 4 cm 1.5 cm 0.02

References

[1] E. Krotkov, D. Hackett, L. Jackel, M. Perschbacher, J. Pippine, J. Strauss,
G. Pratt, and C. Orlowski, “The darpa robotics challenge finals: Results
and perspectives,” Journal of Field Robotics, vol. 34, no. 2, pp. 229–240,
2017.

[2] A. Billard and D. Kragic, “Trends and challenges in robot manipulation,”
Science, vol. 364, no. 6446, p. eaat8414, 2019.

[3] S. Chitta, B. Cohen, and M. Likhachev, “Planning for autonomous door
opening with a mobile manipulator,” in International Conference on
Robotics and Automation (ICRA), 2010.

[4] F. Burget, A. Hornung, and M. Bennewitz, “Whole-body motion plan-
ning for manipulation of articulated objects,” in International Conference
on Robotics and Automation (ICRA), 2013.

[5] Z. Jiao, Z. Zhang, X. Jiang, D. Han, S.-C. Zhu, Y. Zhu, and H. Liu, “Con-
solidating kinematic models to promote coordinated mobile manipu-
lations,” in International Conference on Intelligent Robots and Systems
(IROS), 2021.

[6] Y. Karayiannidis, C. Smith, F. E. Vina, P. Ogren, and D. Kragic, ““open
sesame!” adaptive force/velocity control for opening unknown doors,”
in International Conference on Intelligent Robots and Systems (IROS),
2012.

[7] K. Hausman, S. Niekum, S. Osentoski, and G. S. Sukhatme, “Active
articulation model estimation through interactive perception,” in Inter-
national Conference on Robotics and Automation (ICRA), 2015.

[8] Y. Karayiannidis, C. Smith, F. E. V. Barrientos, P. Ögren, and D. Kragic,
“An adaptive control approach for opening doors and drawers under
uncertainties,” Transactions on Robotics (T-RO), vol. 32, no. 1, pp. 161–
175, 2016.

[9] R. Hu, W. Li, O. Van Kaick, A. Shamir, H. Zhang, and H. Huang,
“Learning to predict part mobility from a single static snapshot,” ACM
Transactions on Graphics (TOG), vol. 36, no. 6, pp. 1–13, 2017.

[10] B. Abbatematteo, S. Tellex, and G. Konidaris, “Learning to generalize
kinematic models to novel objects,” in Conference on Robot Learning
(CoRL), 2019.

[11] X. Li, H. Wang, L. Yi, L. J. Guibas, A. L. Abbott, and S. Song, “Category-
level articulated object pose estimation,” in Conference on Computer
Vision and Pattern Recognition (CVPR), 2020.

[12] C. Moses, M. Noseworthy, L. P. Kaelbling, T. Lozano-Pérez, and N. Roy,
“Visual prediction of priors for articulated object interaction,” in
International Conference on Robotics and Automation (ICRA), 2020.

[13] V. Zeng, T. E. Lee, J. Liang, and O. Kroemer, “Visual identification of
articulated object parts,” in International Conference on Intelligent Robots
and Systems (IROS), 2021.

[14] M. Mittal, D. Hoeller, F. Farshidian, M. Hutter, and A. Garg, “Articulated
object interaction in unknown scenes with whole-body mobile manip-
ulation,” in International Conference on Intelligent Robots and Systems
(IROS), 2022.

[15] M. Han, Z. Zhang, Z. Jiao, X. Xie, Y. Zhu, S.-C. Zhu, and H. Liu,
“Scene reconstruction with functional objects for robot autonomy,”
International Journal of Computer Vision (IJCV), vol. 130, no. 12,
pp. 2940–2961, 2022.

[16] J. Lv, Q. Yu, L. Shao, W. Liu, W. Xu, and C. Lu, “Sagci-system: To-
wards sample-efficient, generalizable, compositional, and incremental
robot learning,” in International Conference on Robotics and Automation
(ICRA), 2022.

[17] Z. Jiang, C.-C. Hsu, and Y. Zhu, “Ditto: Building digital twins of
articulated objects from interaction,” in Conference on Computer Vision
and Pattern Recognition (CVPR), 2022.

[18] B. Eisner, H. Zhang, and D. Held, “Flowbot3d: Learning 3D articulation
flow to manipulate articulated objects,” in Robotics: Science and Systems
(RSS), 2022.

[19] R. Martín-Martín and O. Brock, “Coupled recursive estimation for on-
line interactive perception of articulated objects,” International Journal
of Robotics Research (IJRR), vol. 41, no. 8, pp. 741–777, 2022.

[20] Z. Zhang, L. Zhang, Z. Wang, Z. Jiao, M. Han, Y. Zhu, S.-C. Zhu, and
H. Liu, “Part-level scene reconstruction affords robot interaction,” in
International Conference on Intelligent Robots and Systems (IROS), 2023.

[21] P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal, “Learning and
generalization of motor skills by learning from demonstration,” in
International Conference on Robotics and Automation (ICRA), 2009.

[22] T. Welschehold, C. Dornhege, and W. Burgard, “Learning mobile
manipulation actions from human demonstrations,” in International
Conference on Intelligent Robots and Systems (IROS), 2017.

[23] D.-A. Huang, S. Nair, D. Xu, Y. Zhu, A. Garg, L. Fei-Fei, S. Savarese,
and J. C. Niebles, “Neural task graphs: Generalizing to unseen tasks
from a single video demonstration,” in Conference on Computer Vision
and Pattern Recognition (CVPR), 2019.

[24] T. Zhang, Z. McCarthy, O. Jow, D. Lee, X. Chen, K. Goldberg,
and P. Abbeel, “Deep imitation learning for complex manipulation
tasks from virtual reality teleoperation,” in International Conference on
Robotics and Automation (ICRA), 2018.

[25] C. Lynch, M. Khansari, T. Xiao, V. Kumar, J. Tompson, S. Levine, and
P. Sermanet, “Learning latent plans from play,” in Conference on Robot
Learning (CoRL), 2020.

[26] H. Xiong, Q. Li, Y.-C. Chen, H. Bharadhwaj, S. Sinha, and A. Garg,
“Learning by watching: Physical imitation of manipulation skills from
human videos,” in International Conference on Intelligent Robots and
Systems (IROS), 2021.

[27] Y. Qin, Y.-H. Wu, S. Liu, H. Jiang, R. Yang, Y. Fu, and X. Wang, “Dexmv:
Imitation learning for dexterous manipulation from human videos,” in
European Conference on Computer Vision (ECCV), 2022.

[28] J. Wong, A. Tung, A. Kurenkov, A. Mandlekar, L. Fei-Fei, S. Savarese,
and R. Martín-Martín, “Error-aware imitation learning from teleoper-
ation data for mobile manipulation,” in Conference on Robot Learning
(CoRL), 2022.

[29] R. Gong, J. Huang, Y. Zhao, H. Geng, X. Gao, Q. Wu, W. Ai, Z. Zhou,
D. Terzopoulos, and S.-C. Zhu, “Arnold: A benchmark for language-
grounded task learning with continuous states in realistic 3d scenes,”
in International Conference on Computer Vision (ICCV), 2023.

[30] J. Ye, J. Wang, B. Huang, Y. Qin, and X. Wang, “Learning continuous
grasping function with a dexterous hand from human demonstrations,”
IEEE Robotics and Automation Letters (RA-L), vol. 8, no. 5, pp. 2882–
2889, 2023.

[31] Y. Urakami, A. Hodgkinson, C. Carlin, R. Leu, L. Rigazio, and P. Abbeel,
“Doorgym: A scalable door opening environment and baseline agent,”
in Advances in Neural Information Processing Systems (NeurIPS), 2019.

[32] Z. Xu, Z. He, and S. Song, “Universal manipulation policy network for
articulated objects,” IEEE Robotics and Automation Letters (RA-L), vol. 7,
no. 2, pp. 2447–2454, 2022.

[33] Y. Chen, T. Wu, S. Wang, X. Feng, J. Jiang, Z. Lu, S. McAleer, H. Dong,
S.-C. Zhu, and Y. Yang, “Towards human-level bimanual dexterous
manipulation with reinforcement learning,” in Advances in Neural
Information Processing Systems (NeurIPS), 2022.

[34] H. Geng, Z. Li, Y. Geng, J. Chen, H. Dong, and H. Wang, “Partmanip:
Learning cross-category generalizable part manipulation policy from
point cloud observations,” in Conference on Computer Vision and Pattern
Recognition (CVPR), 2023.

[35] K. Mo, S. Zhu, A. X. Chang, L. Yi, S. Tripathi, L. J. Guibas, and H. Su,
“Partnet: A large-scale benchmark for fine-grained and hierarchical
part-level 3D object understanding,” in Conference on Computer Vision
and Pattern Recognition (CVPR), 2019.

[36] F. Xiang, Y. Qin, K. Mo, Y. Xia, H. Zhu, F. Liu, M. Liu, H. Jiang,
Y. Yuan, H. Wang, et al., “Sapien: A simulated part-based interactive
environment,” in Conference on Computer Vision and Pattern Recognition
(CVPR), 2020.

[37] L. Liu, W. Xu, H. Fu, S. Qian, Q. Yu, Y. Han, and C. Lu, “AKB-48: a real-
world articulated object knowledge base,” in Conference on Computer
Vision and Pattern Recognition (CVPR), 2022.

[38] H. Geng, H. Xu, C. Zhao, C. Xu, L. Yi, S. Huang, and H. Wang,
“Gapartnet: Cross-category domain-generalizable object perception and
manipulation via generalizable and actionable parts,” in Conference on
Computer Vision and Pattern Recognition (CVPR), 2023.

[39] Y. Zhu, T. Gao, L. Fan, S. Huang, M. Edmonds, H. Liu, F. Gao, C. Zhang,
S. Qi, Y. N. Wu, et al., “Dark, beyond deep: A paradigm shift to cognitive
ai with humanlike common sense,” Engineering, vol. 6, no. 3, pp. 310–
345, 2020.

https://pku.ai/


Zhao et al.: Tactile-Informed Prior-Free Manipulation of Articulated Objects 18

[40] M. K. Johnson and E. H. Adelson, “Retrographic sensing for the
measurement of surface texture and shape,” in Conference on Computer
Vision and Pattern Recognition (CVPR), 2009.

[41] W. Yuan, S. Dong, and E. H. Adelson, “Gelsight: High-resolution robot
tactile sensors for estimating geometry and force,” Sensors, vol. 17,
no. 12, p. 2762, 2017.

[42] Y. Qin, W. Yang, B. Huang, K. Van Wyk, H. Su, X. Wang, Y.-W. Chao,
and D. Fox, “Anyteleop: A general vision-based dexterous robot arm-
hand teleoperation system,” in Robotics: Science and Systems (RSS), 2023.

[43] B. Zheng, S. Verma, J. Zhou, I. W. Tsang, and F. Chen, “Imitation
learning: Progress, taxonomies and challenges,” IEEE Transactions on
Neural Networks and Learning Systems, no. 99, pp. 1–16, 2022.

[44] Y. Qin, H. Su, and X. Wang, “From one hand to multiple hands:
Imitation learning for dexterous manipulation from single-camera
teleoperation,” IEEE Robotics and Automation Letters (RA-L), vol. 7, no. 4,
pp. 10873–10881, 2022.

[45] Z. Huang, J. Xu, S. Dai, K. Xu, H. Zhang, H. Huang, and R. Hu,
“Nift: Neural interaction field and template for object manipulation,”
in International Conference on Robotics and Automation (ICRA), 2023.

[46] A. Tekden, M. P. Deisenroth, and Y. Bekiroglu, “Grasp transfer based
on self-aligning implicit representations of local surfaces,” IEEE Robotics
and Automation Letters (RA-L), 2023.

[47] P. Li, T. Liu, Y. Li, Y. Geng, Y. Zhu, Y. Yang, and S. Huang, “Gendex-
grasp: Generalizable dexterous grasping,” in International Conference on
Robotics and Automation (ICRA), 2023.

[48] N. Likar, B. Nemec, and L. Žlajpah, “Virtual mechanism approach for
dual-arm manipulation,” Robotica, vol. 32, no. 6, p. E3, 2014.

[49] A. J. Schmid, N. Gorges, D. Goger, and H. Worn, “Opening a door with
a humanoid robot using multi-sensory tactile feedback,” in International
Conference on Robotics and Automation (ICRA), 2008.

[50] H. Yousef, M. Boukallel, and K. Althoefer, “Tactile sensing for dexterous
in-hand manipulation in robotics—a review,” Sensors and Actuators A:
physical, vol. 167, no. 2, pp. 171–187, 2011.

[51] J. Lloyd and N. F. Lepora, “Pose and shear-based tactile servoing,”
International Journal of Robotics Research (IJRR), vol. 0, no. 0, 2024.

[52] J. A. Fishel and G. E. Loeb, “Sensing tactile microvibrations with the
biotac—comparison with human sensitivity,” in International Conference
on Biomedical Robotics and Biomechatronics (BioRob), 2012.

[53] H. Liu, X. Xie, M. Millar, M. Edmonds, F. Gao, Y. Zhu, V. J. Santos,
B. Rothrock, and S.-C. Zhu, “A glove-based system for studying hand-
object manipulation via joint pose and force sensing,” in International
Conference on Intelligent Robots and Systems (IROS), 2017.

[54] Z. Lu and H. Yu, “Gtac-hand: A robotic hand with integrated tactile
sensing and extrinsic contact sensing capabilities,” Transactions on
Mechatronics (TMECH), 2023.

[55] J. Kim, M. Lee, H. J. Shim, R. Ghaffari, H. R. Cho, D. Son, Y. H.
Jung, M. Soh, C. Choi, S. Jung, et al., “Stretchable silicon nanoribbon
electronics for skin prosthesis,” Nature Communications, vol. 5, no. 1,
pp. 1–11, 2014.

[56] Y. Wu, Y. Liu, Y. Zhou, Q. Man, C. Hu, W. Asghar, F. Li, Z. Yu, J. Shang,
G. Liu, et al., “A skin-inspired tactile sensor for smart prosthetics,”
Science Robotics, vol. 3, no. 22, p. eaat0429, 2018.

[57] C. M. Boutry, M. Negre, M. Jorda, O. Vardoulis, A. Chortos, O. Khatib,
and Z. Bao, “A hierarchically patterned, bioinspired e-skin able to detect
the direction of applied pressure for robotics,” Science Robotics, vol. 3,
no. 24, p. eaau6914, 2018.

[58] W. W. Lee, Y. J. Tan, H. Yao, S. Li, H. H. See, M. Hon, K. A. Ng, B. Xiong,
J. S. Ho, and B. C. Tee, “A neuro-inspired artificial peripheral nervous
system for scalable electronic skins,” Science Robotics, vol. 4, no. 32,
p. eaax2198, 2019.

[59] G. Li, S. Liu, L. Wang, and R. Zhu, “Skin-inspired quadruple tactile
sensors integrated on a robot hand enable object recognition,” Science
Robotics, vol. 5, no. 49, p. eabc8134, 2020.

[60] Y. Yu, J. Li, S. A. Solomon, J. Min, J. Tu, W. Guo, C. Xu, Y. Song,
and W. Gao, “All-printed soft human-machine interface for robotic
physicochemical sensing,” Science Robotics, vol. 7, no. 67, p. eabn0495,
2022.

[61] R. Li, R. Platt, W. Yuan, A. Ten Pas, N. Roscup, M. A. Srinivasan,
and E. Adelson, “Localization and manipulation of small parts using
gelsight tactile sensing,” in International Conference on Intelligent Robots
and Systems (IROS), 2014.

[62] A. C. Abad and A. Ranasinghe, “Visuotactile sensors with emphasis
on gelsight sensor: A review,” IEEE Sensors Journal, vol. 20, no. 14,
pp. 7628–7638, 2020.

[63] A. C. Abad and A. Ranasinghe, “Low-cost gelsight with uv markings:
Feature extraction of objects using alexnet and optical flow without

3d image reconstruction,” in International Conference on Robotics and
Automation (ICRA), 2020.

[64] M. Lambeta, P.-W. Chou, S. Tian, B. Yang, B. Maloon, V. R. Most,
D. Stroud, R. Santos, A. Byagowi, G. Kammerer, et al., “Digit: A
novel design for a low-cost compact high-resolution tactile sensor with
application to in-hand manipulation,” IEEE Robotics and Automation
Letters (RA-L), vol. 5, no. 3, pp. 3838–3845, 2020.

[65] I. H. Taylor, S. Dong, and A. Rodriguez, “Gelslim 3.0: High-resolution
measurement of shape, force and slip in a compact tactile-sensing
finger,” in International Conference on Robotics and Automation (ICRA),
pp. 10781–10787, 2022.

[66] W. Li, M. Wang, J. Li, Y. Su, D. K. Jha, X. Qian, K. Althoefer, and H. Liu,
“L3 f-touch: A wireless gelsight with decoupled tactile and three-axis
force sensing,” IEEE Robotics and Automation Letters (RA-L), 2023.

[67] J. Zhao and E. H. Adelson, “Gelsight svelte: A human finger-shaped
single-camera tactile robot finger with large sensing coverage and
proprioceptive sensing,” in International Conference on Intelligent Robots
and Systems (IROS), 2023.

[68] W. Li, A. Alomainy, I. Vitanov, Y. Noh, P. Qi, and K. Althoefer, “F-
touch sensor: Concurrent geometry perception and multi-axis force
measurement,” IEEE Sensors Journal, vol. 21, no. 4, pp. 4300–4309, 2020.

[69] S. Wang, Y. She, B. Romero, and E. Adelson, “Gelsight wedge: Measur-
ing high-resolution 3D contact geometry with a compact robot finger,”
in International Conference on Robotics and Automation (ICRA), 2021.

[70] P. J. Besl and N. D. McKay, “Method for registration of 3-d shapes,”
in Sensor fusion IV: control paradigms and data structures, vol. 1611,
pp. 586–606, Spie, 1992.

[71] K. Mo, L. J. Guibas, M. Mukadam, A. Gupta, and S. Tulsiani,
“Where2act: From pixels to actions for articulated 3D objects,” in
International Conference on Computer Vision (ICCV), 2021.

https://pku.ai/

	Introduction
	Related Work
	Manipulation with Explicit Priors
	Manipulation with Implicit Priors
	Robot-Object Contact Modeling
	Tactile Sensors

	The Tac-Man Method
	Notation and Preliminaries
	Problem Formulation
	Contact Representation
	Stable Contact
	Robot Pose Update

	Real-world Experiments
	Experimental Setup
	Manipulation under Ambiguous Priors
	Manipulation under Imperfect Priors
	Manipulation under Unknown Priors
	Manipulation under Obsolescent Priors

	Large-scale Verification in Simulation
	Environmental Setup
	Results

	Discussion
	Advancing Robotic Manipulation with Tac-Man
	Limitations and Future Work

	Conclusion
	Appendix
	Material List
	Details in Simulation Setup
	Preprocess PartNet-Mobility
	Generate Random 1- Playboards

	References

